Large language models (LLMs) excel in abstractive summarization tasks, delivering fluent and pertinent summaries. Recent advancements have extended their capabilities to handle long-input contexts, exceeding 100k tokens. However, in question answering, language models exhibit uneven utilization of their input context. They tend to favor the initial and final segments, resulting in a U-shaped performance pattern concerning where the answer is located within the input. This bias raises concerns, particularly in summarization where crucial content may be dispersed throughout the source document(s). Besides, in summarization, mapping facts from the source to the summary is not trivial as salient content is usually re-phrased. In this paper, we conduct the first comprehensive study on context utilization and position bias in summarization. Our analysis encompasses 6 LLMs, 10 datasets, and 5 evaluation metrics. We introduce a new evaluation benchmark called MiddleSum on the which we benchmark two alternative inference methods to alleviate position bias: hierarchical summarization and incremental summarization. Our code and data can be found here: https://github.com/ntunlp/MiddleSum.
While large language models have significantly enhanced the effectiveness of discourse relation classifications, it remains unclear whether their comprehension is faithful and reliable. We provide DiSQ, a new method for evaluating the faithfulness of understanding discourse based on question answering. We first employ in-context learning to annotate the reasoning for discourse comprehension, based on the connections among key events within the discourse. Following this, DiSQ interrogates the model with a sequence of questions to assess its grasp of core event relations, its resilience to counterfactual queries, as well as its consistency to its previous responses. then evaluate language models with different architectural designs using DiSQ, finding: (1) DiSQ presents a significant challenge for all models, with the top-performing GPT model attaining only 41% of the ideal performance in PDTB; (2) DiSQ is robust to domain shifts and paraphrase variations; (3) Open-source models generally lag behind their closed-source GPT counterparts, with notable exceptions being those enhanced with chat and code/math features; (4) Our analysis validates the effectiveness of explicitly signalled discourse connectives, the role of contextual information, and the benefits of using historical QA data.
We propose a new method, Adversarial In-Context Learning (adv-ICL), to optimize prompts for in-context learning (ICL). Inspired by adversarial learning, adv-ICL is implemented as a two-player game between a generator and discriminator, with LLMs acting as both. In each round, given an input prefixed by task instructions and several exemplars, the generator produces an output. The discriminator then classifies the generator’s input-output pair as model-generated or real data. Based on the discriminator’s loss, a prompt modifier LLM proposes possible edits to the generator and discriminator prompts, and the edits that most improve the adversarial loss are selected. We show that applying adv-ICL results in significant improvements over state-of-the-art prompt optimization techniques for both open and closed-source models on 13 generation and classification tasks including summarization, arithmetic reasoning, machine translation, data-to-text generation, and the MMLU and big-bench hard benchmarks. In addition, our method is computationally efficient, easily extensible to other LLMs and tasks, and effective in low-resource settings.
Large language models (LLMs) have rapidly evolved as the foundation of various natural language processing (NLP) applications. Despite their wide use cases, their understanding of culturally-related concepts and reasoning remains limited. Meantime, there is a significant need to enhance these models’ cultural reasoning capabilities, especially concerning underrepresented regions. This paper introduces a novel pipeline for extracting high-quality, culturally-related instruction tuning datasets from vast unstructured corpora. We utilize a self-instruction generation pipeline to identify cultural concepts and trigger instruction. By integrating with a general-purpose instruction tuning dataset, our model demonstrates enhanced capabilities in recognizing and understanding regional cultural nuances, thereby enhancing its reasoning capabilities. We conduct experiments across three regions: Singapore, the Philippines, and the United States, achieving performance improvement of up to 6%. Our research opens new avenues for extracting cultural instruction tuning sets directly from unstructured data, setting a precedent for future innovations in the field.
In the realm of dialogue systems, generated responses often lack personalization. This is particularly true in the medical domain, where research is limited by scarce available domain-specific data and the complexities of modeling medical context and persona information. In this work, we investigate the potential of harnessing large language models for personalized medical dialogue generation. In particular, to better aggregate the long conversational context, we adopt topic-focused summarization to distill core information from the dialogue history, and use such information to guide the conversation flow and generated content. Drawing inspiration from real-world telehealth conversations, we outline a comprehensive pipeline encompassing data processing, profile construction, and domain adaptation. This work not only highlights our technical approach but also shares distilled insights from the data preparation and model construction phases.
State-space models are a low-complexity alternative to transformers for encoding long sequences and capturing long-term dependencies. We propose LOCOST: an encoder-decoder architecture based on state-space models for conditional text generation with long context inputs. With a computational complexity of 𝒪(L log L), this architecture can handle significantly longer sequences than state-of-the-art models that are based on sparse attention patterns. We evaluate our model on a series of long document abstractive summarization tasks. The model reaches a performance level that is 93-96% comparable to the top-performing sparse transformers of the same size while saving up to 50% memory during training and up to 87% during inference. Additionally, LOCOST effectively handles input texts exceeding 600K tokens at inference time, setting new state-of-the-art results on full-book summarization and opening new perspectives for long input processing.
Large Language Models (LLMs) have demonstrated significant potential in handling complex reasoning tasks through step-by-step rationale generation. However, recent studies have raised concerns regarding the hallucination and flaws in their reasoning process. Substantial efforts are being made to improve the reliability and faithfulness of the generated rationales. Some approaches model reasoning as planning, while others focus on annotating for process supervision. Nevertheless, the planning-based search process often results in high latency due to the frequent assessment of intermediate reasoning states and the extensive exploration space. Additionally, supervising the reasoning process with human annotation is costly and challenging to scale for LLM training. To address these issues, in this paper, we propose a framework to learn planning-based reasoning through Direct Preference Optimization (DPO) on collected trajectories, which are ranked according to synthesized process rewards. Our results on challenging logical reasoning benchmarks demonstrate the effectiveness of our learning framework, showing that our 7B model can surpass the strong counterparts like GPT-3.5-Turbo.
Intelligent Tutoring Systems (ITSs) can provide personalized and self-paced learning experience. The emergence of large language models (LLMs) further enables better human-machine interaction, and facilitates the development of conversational ITSs in various disciplines such as math and language learning. In dialogic teaching, recognizing and adapting to individual characteristics can significantly enhance student engagement and learning efficiency. However, characterizing and simulating student’s persona remain challenging in training and evaluating conversational ITSs. In this work, we propose a framework to construct profiles of different student groups by refining and integrating both cognitive and noncognitive aspects, and leverage LLMs for personality-aware student simulation in a language learning scenario. We further enhance the framework with multi-aspect validation, and conduct extensive analysis from both teacher and student perspectives. Our experimental results show that state-of-the-art LLMs can produce diverse student responses according to the given language ability and personality traits, and trigger teacher’s adaptive scaffolding strategies.
We present Multi-expert Prompting, a novel enhancement of ExpertPrompting (Xu et al., 2023), designed to improve the large language model (LLM) generation. Specifically, it guides an LLM to fulfill an input instruction by simulating multiple experts, aggregating their responses, and selecting the best among individual and aggregated responses. This process is performed in a single chain of thoughts through our seven carefully designed subtasks derived from the Nominal Group Technique (Ven and Delbecq, 1974), a well-established decision-making framework. Our evaluations demonstrate that Multi-expert Prompting significantly outperforms ExpertPrompting and comparable baselines in enhancing the truthfulness, factuality, informativeness, and usefulness of responses while reducing toxicity and hurtfulness. It further achieves state-of-the-art truthfulness by outperforming the best baseline by 8.69% with ChatGPT. Multi-expert Prompting is efficient, explainable, and highly adaptable to diverse scenarios, eliminating the need for manual prompt construction.
Despite advancements, fine-tuning Large Language Models (LLMs) remains costly due to the extensive parameter count and substantial data requirements for model generalization. Accessibility to computing resources remains a barrier for the open-source community. To address this challenge, we propose the In2Core algorithm, which selects a coreset by analyzing the correlation between training and evaluation samples with a trained model. Notably, we assess the model’s internal gradients to estimate this relationship, aiming to rank the contribution of each training point. To enhance efficiency, we propose an optimization to compute influence functions with a reduced number of layers while achieving similar accuracy. By applying our algorithm to instruction fine-tuning data of LLMs, we can achieve similar performance with just 50% of the training data. Meantime, using influence functions to analyze model coverage to certain testing samples could provide a reliable and interpretable signal on the training set’s coverage of those test points.
As the rapidly advancing domain of natural language processing (NLP), large language models (LLMs) have emerged as powerful tools for interpreting human commands and generating text across various tasks. Nonetheless, the resilience of LLMs to handle text containing inherent errors, stemming from human interactions and collaborative systems, has not been thoroughly explored. Our study investigates the resilience of LLMs against five common types of disruptions including 1) ASR (Automatic Speech Recognition) errors, 2) OCR (Optical Character Recognition) errors, 3) grammatical mistakes, 4) typographical errors, and 5) distractive content. We aim to investigate how these models react by deliberately embedding these errors into instructions. Our findings reveal that while some LLMs show a degree of resistance to certain types of noise, their overall performance significantly suffers. This emphasizes the importance of further investigation into enhancing model resilience. In response to the observed decline in performance, our study also evaluates a “re-pass” strategy, designed to purify the instructions of noise before the LLMs process them. Our analysis indicates that correcting noisy instructions, particularly for open-source LLMs, presents significant challenges.
Current metrics for evaluating Dialogue State Tracking (DST) systems exhibit three primary limitations. They: i) erroneously presume a uniform distribution of slots throughout the dialog, ii) neglect to assign partial scores for individual turns, iii) frequently overestimate or underestimate performance by repeatedly counting the models’ successful or failed predictions. To address these shortcomings, we introduce a novel metric: Granular Change Accuracy (GCA). GCA focuses on evaluating the predicted changes in dialogue state over the entire dialogue history. Benchmarking reveals that GCA effectively reduces biases arising from distribution uniformity and the positioning of errors across turns, resulting in a more precise evaluation. Notably, we find that these biases are particularly pronounced when evaluating few-shot or zero-shot trained models, becoming even more evident as the model’s error rate increases. Hence, GCA offers significant promise, particularly for assessing models trained with limited resources. Our GCA implementation is a useful addition to the pool of DST metrics.
We present SeaEval, a benchmark for multilingual foundation models. In addition to characterizing how these models understand and reason with natural language, we also investigate how well they comprehend cultural practices, nuances, and values. Alongside standard accuracy metrics, we investigate the brittleness of foundation models in the dimensions of semantics and multilinguality. Our analyses span both open-sourced and closed models, leading to empirical results across classic NLP tasks, reasoning, and cultural comprehension. Key findings indicate (1) Many models exhibit varied behavior when given paraphrased instructions. (2) Many models still suffer from exposure bias (e.g., positional bias, majority label bias). (3) For questions rooted in factual, scientific, and commonsense knowledge, consistent responses are expected across multilingual queries that are semantically equivalent. Yet, most models surprisingly demonstrate inconsistent performance on these queries. (4) Multilingually-trained models have not attained “balanced multilingual” capabilities. Our endeavors underscore the need for more generalizable semantic representations and enhanced multilingual contextualization. SeaEval can serve as a launchpad for more thorough investigations and evaluations for multilingual and multicultural scenarios.
Traditional attempts to enhance the logical reasoning abilities of language models often rely on supervised fine-tuning, limiting their generalization to new tasks or domains. Large Language Models (LLMs), with their capacity to condense vast knowledge, can effectively tackle many tasks. Yet, our experiments reveal a gap in their performance on logical reasoning benchmarks when compared to state-of-the-art fine-tuning based models. To bridge this gap, we present LogicLLM, a first-of-its-kind, fully self-supervised framework for integrating logical reasoning capabilities into LLMs, and activating them via in-context learning. We apply this to two LLM series, FLAN-T5 and LLaMA, with parameter sizes from 3 billion to 33 billion. LogicLLM demonstrates its effectiveness through successful improvements on two logical reasoning benchmarks (ReClor and LogiQA-v2). Additionally, LogicLLM based on FLAN-T5-11B attains comparable results to ChatGPT, and evaluations with LLaMA-based models on three language understanding benchmarks (RACE, MMLU and Big-Bench-Hard) confirm that the improvements come without compromising the model’s general language understanding capabilities.
Large language models demonstrate remarkable proficiency in various tasks across multiple languages. However, their potential in code-switching remains underexplored, particularly in cultural and educational contexts. Code-switching or translanguaging plays a crucial role in bilingual education, facilitating comprehension and engagement among students with varied linguistic proficiencies. In this work, we present a pedagogy-inspired framework that introduces traditional classroom practices of code-switching to intelligent tutoring systems. Specifically, we develop fine-grained instructional strategies tailored to multilingual and educational needs. We conduct experiments involving both LLM-based evaluation and expert analysis to assess the effectiveness of translanguaging in tutoring dialogues. Our experimental results indicate that strategic code-switching can significantly enhance the learning experience. This work not only advances dialogic tutors in language learning, but also extends LLMs to better accommodate multilingual interaction.
Stance detection determines whether the author of a piece of text is in favor of, against, or neutral towards a specified target, and can be used to gain valuable insights into social media. The ubiquitous indirect referral of targets makes this task challenging, as it requires computational solutions to model semantic features and infer the corresponding implications from a literal statement. Moreover, the limited amount of available training data leads to subpar performance in out-of-domain and cross-target scenarios, as data-driven approaches are prone to rely on superficial and domain-specific features. In this work, we decompose the stance detection task from a linguistic perspective, and investigate key components and inference paths in this task. The stance triangle is a generic linguistic framework previously proposed to describe the fundamental ways people express their stance. We further expand it by characterizing the relationship between explicit and implicit objects. We then use the framework to extend one single training corpus with additional annotation. Experimental results show that strategically-enriched data can significantly improve the performance on out-of-domain and cross-target evaluation.
A challenge in the Dialogue State Tracking (DST) field is adapting models to new domains without using any supervised data — zero-shot domain adaptation. Parameter-Efficient Transfer Learning (PETL) has the potential to address this problem due to its robustness. However, it has yet to be applied to the zero-shot scenarios, as it is not clear how to apply it unsupervisedly. Our method, Prompter, uses descriptions of target domain slots to generate dynamic prefixes that are concatenated to the key and values at each layer’s self-attention mechanism. This allows for the use of prefix-tuning in zero-shot. Prompter outperforms previous methods on both the MultiWOZ and SGD benchmarks. In generating prefixes, our analyses find that Prompter not only utilizes the semantics of slot descriptions but also how often the slots appear together in conversation. Moreover, Prompter’s gains are due to its improved ability to distinguish ”none”-valued dialogue slots, compared against baselines.
Conversational Question Generation (CQG) is a critical task for machines to assist humans in fulfilling their information needs through conversations. The task is generally cast into two different settings: answer-aware and answer-unaware. While the former facilitates the models by exposing the expected answer, the latter is more realistic and receiving growing attentions recently. What-to-ask and how-to-ask are the two main challenges in the answer-unaware setting. To address the first challenge, existing methods mainly select sequential sentences in context as the rationales. We argue that the conversation generated using such naive heuristics may not be natural enough as in reality, the interlocutors often talk about the relevant contents that are not necessarily sequential in context. Additionally, previous methods decide the type of question to be generated (boolean/span-based) implicitly. Modeling the question type explicitly is crucial as the answer, which hints the models to generate a boolean or span-based question, is unavailable. To this end, we present SG-CQG, a two-stage CQG framework. For the what-to-ask stage, a sentence is selected as the rationale from a semantic graph that we construct, and extract the answer span from it. For the how-to-ask stage, a classifier determines the target answer type of the question via two explicit control signals before generating and filtering. In addition, we propose Conv-Distinct, a novel evaluation metric for CQG, to evaluate the diversity of the generated conversation from a context. Compared with the existing answer-unaware CQG models, the proposed SG-CQG achieves state-of-the-art performance.
In Multi-Document Summarization (MDS), the input can be modeled as a set of documents, and the output is its summary. In this paper, we focus on pretraining objectives for MDS. Specifically, we introduce a novel pretraining objective, which involves selecting the ROUGE-based centroid of each document cluster as a proxy for its summary. Our objective thus does not require human written summaries and can be utilized for pretraining on a dataset consisting solely of document sets. Through zero-shot, few-shot, and fully supervised experiments on multiple MDS datasets, we show that our model Centrum is better or comparable to a state-of-the-art model. We make the pretrained and fine-tuned models freely available to the research community https://github.com/ratishsp/centrum.
Annotated data plays a critical role in Natural Language Processing (NLP) in training models and evaluating their performance. Given recent developments in Large Language Models (LLMs), models such as ChatGPT demonstrate zero-shot capability on many text-annotation tasks, comparable with or even exceeding human annotators. Such LLMs can serve as alternatives for manual annotation, due to lower costs and higher scalability. However, limited work has leveraged LLMs as complementary annotators, nor explored how annotation work is best allocated among humans and LLMs to achieve both quality and cost objectives. We propose CoAnnotating, a novel paradigm for Human-LLM co-annotation of unstructured texts at scale. Under this framework, we utilize uncertainty to estimate LLMs’ annotation capability. Our empirical study shows CoAnnotating to be an effective means to allocate work from results on different datasets, with up to 21% performance improvement over random baseline. For code implementation, see https://github.com/SALT-NLP/CoAnnotating.
This study investigates machine translation between related languages i.e., languages within the same family that share linguistic characteristics such as word order and lexical similarity. Machine translation through few-shot prompting leverages a small set of translation pair examples to generate translations for test sentences. This procedure requires the model to learn how to generate translations while simultaneously ensuring that token ordering is maintained to produce a fluent and accurate translation. We propose that for related languages, the task of machine translation can be simplified by leveraging the monotonic alignment characteristic of such languages. We introduce DecoMT, a novel approach of few-shot prompting that decomposes the translation process into a sequence of word chunk translations. Through automatic and human evaluation conducted on multiple related language pairs across various language families, we demonstrate that our proposed approach of decomposed prompting surpasses multiple established few-shot baseline approaches. For example, DecoMT outperforms the strong few-shot prompting BLOOM model with an average improvement of 8 chrF++ scores across the examined languages.
Conventional dialogue summarization methods directly generate summaries and do not consider user’s specific interests. This poses challenges in cases where the users are more focused on particular topics or aspects. With the advancement of instruction-finetuned language models, we introduce instruction-tuning to dialogues to expand the capability set of dialogue summarization models. To overcome the scarcity of instructive dialogue summarization data, we propose a three-step approach to synthesize high-quality query-based summarization triples. This process involves summary-anchored query generation, query filtering and query-based summary generation. By training a unified model called InstructDS (Instructive Dialogue Summarization) on three summarization datasets with multi-purpose instructive triples, we expand the capability of dialogue summarization models. We evaluate our method on four datasets, including dialogue summarization and dialogue reading comprehension. Experimental results show that our approach outperforms the state-of-the-art models and even models with larger sizes. Additionally, our model exhibits higher generalizability and faithfulness, as confirmed by human subjective evaluations.
Utilizing natural language processing techniques in clinical conversations is effective to improve the efficiency of health management workflows for medical staff and patients. Dialogue segmentation and topic categorization are two fundamental steps for processing verbose spoken conversations and highlighting informative spans for downstream tasks. However, in practical use cases, due to the variety of segmentation granularity and topic definition, and the lack of diverse annotated corpora, no generic models are readily applicable for domain-specific applications. In this work, we introduce and adopt a joint model for dialogue segmentation and topic categorization, and conduct a case study on healthcare follow-up calls for diabetes management; we provide insights from both data and model perspectives toward performance and robustness.
With the rise of task-specific pre-training objectives, abstractive summarization models like PEGASUS offer appealing zero-shot performance on downstream summarization tasks. However, the performance of such unsupervised models still lags significantly behind their supervised counterparts. Similarly to the supervised setup, we notice a very high variance in quality among summary candidates from these models while only one candidate is kept as the summary output. In this paper, we propose to re-rank summary candidates in an unsupervised manner, aiming to close the performance gap between unsupervised and supervised models. Our approach improves the unsupervised PEGASUS by up to 7.27% and ChatGPT by up to 6.86% relative mean ROUGE across four widely-adopted summarization benchmarks ; and achieves relative gains of 7.51% (up to 23.73% from XSum to WikiHow) averaged over 30 zero-shot transfer setups (finetuning on a dataset, evaluating on another).
Adapting a large language model for multiple-attribute text style transfer via fine-tuning can be challenging due to the substantial amount of computational resources and labeled data required for the specific downstream task. In this paper, we address this challenge by introducing Adapter-TST, a framework that freezes the pre-trained model’s original parameters and enables the development of a multiple-attribute text style transfer model. Using BART as the backbone model, Adapter-TST utilizes different neural adapters to model different types of attribute information, similar to a plug-in connected to BART. Our method allows control over multiple attributes (e.g. sentiment, tense, active or passive voice) and configures the adapters’ architecture to generate multiple outputs in respect to attributes or compositional editing on the same sentence. We evaluate the proposed model on both traditional sentiment transfer and multiple-attribute transfer tasks. The experiment results demonstrate that Adapter-TST outperforms all the state-of-the-art baselines with significantly less computational resources. We have also empirically shown that each adapter is able to characterize specific stylistic attributes effectively and can be configured to perform compositional editing.
Data collection from manual labeling provides domain-specific and task-aligned supervision for data-driven approaches, and a critical mass of well-annotated resources is required to achieve reasonable performance in natural language processing tasks. However, manual annotations are often challenging to scale up in terms of time and budget, especially when domain knowledge, capturing subtle semantic features, and reasoning steps are needed. In this paper, we investigate the efficacy of leveraging large language models on automated labeling for computational stance detection. We empirically observe that while large language models show strong potential as an alternative to human annotators, their sensitivity to task-specific instructions and their intrinsic biases pose intriguing yet unique challenges in machine annotation. We introduce a multi-label and multi-target sampling strategy to optimize the annotation quality. Experimental results on the benchmark stance detection corpora show that our method can significantly improve performance and learning efficacy.
Large Language Models (LLMs) have shown significant performance in numerous NLP tasks, including summarization and controlled text generation. A notable capability of LLMs is in-context learning (ICL), where the model learns new tasks using input-output pairs in the prompt without any parameter update. However, the performance of LLMs in the context of few-shot abstractive dialogue summarization remains underexplored. This study evaluates various state-of-the-art LLMs on the SAMSum dataset within a few-shot framework. We assess these models in both controlled (entity control, length control, and person-focused planning) and uncontrolled settings, establishing a comprehensive benchmark in few-shot dialogue summarization. Our findings provide insights into summary quality and model controllability, offering a crucial reference for future research in dialogue summarization.
Video-grounded dialogue systems aim to integrate video understanding and dialogue understanding to generate responses that are relevant to both the dialogue and video context. Most existing approaches employ deep learning models and have achieved remarkable performance, given the relatively small datasets available. However, the results are partially accomplished by exploiting biases in the datasets rather than developing multimodal reasoning, resulting in limited generalization. In this paper, we propose a novel approach of Compositional Counterfactual Contrastive Learning (C3) to develop contrastive training between factual and counterfactual samples in video-grounded dialogues. Specifically, we design factual/counterfactual samples based on the temporal steps in videos and tokens in dialogues and propose contrastive loss functions that exploit object-level or action-level variance. Different from prior approaches, we focus on contrastive hidden state representations among compositional output tokens to optimize the representation space in a generation setting. We achieved promising performance gains on the Audio-Visual Scene-Aware Dialogues (AVSD) benchmark and showed the benefits of our approach in grounding video and dialogue context.
Sequence-to-sequence neural networks have recently achieved great success in abstractive summarization, especially through fine-tuning large pre-trained language models on the downstream dataset. These models are typically decoded with beam search to generate a unique summary. However, the search space is very large, and with the exposure bias, such decoding is not optimal. In this paper, we show that it is possible to directly train a second-stage model performing re-ranking on a set of summary candidates. Our mixture-of-experts SummaReranker learns to select a better candidate and consistently improves the performance of the base model. With a base PEGASUS, we push ROUGE scores by 5.44% on CNN- DailyMail (47.16 ROUGE-1), 1.31% on XSum (48.12 ROUGE-1) and 9.34% on Reddit TIFU (29.83 ROUGE-1), reaching a new state-of-the-art. Our code and checkpoints will be available at https://github.com/ntunlp/SummaReranker.
Conversational question generation (CQG) serves as a vital task for machines to assist humans, such as interactive reading comprehension, through conversations. Compared to traditional single-turn question generation (SQG), CQG is more challenging in the sense that the generated question is required not only to be meaningful, but also to align with the provided conversation. Previous studies mainly focus on how to model the flow and alignment of the conversation, but do not thoroughly study which parts of the context and history are necessary for the model. We believe that shortening the context and history is crucial as it can help the model to optimise more on the conversational alignment property. To this end, we propose CoHS-CQG, a two-stage CQG framework, which adopts a novel CoHS module to shorten the context and history of the input. In particular, it selects the top-p sentences and history turns by calculating the relevance scores of them. Our model achieves state-of-the-art performances on CoQA in both the answer-aware and answer-unaware settings.
Within the natural language processing community, English is by far the most resource-rich language. There is emerging interest in conducting translation via computational approaches to conform its dialects or creole languages back to standard English. This computational approach paves the way to leverage generic English language backbones, which are beneficial for various downstream tasks. However, in practical online communication scenarios, the use of language varieties is often accompanied by noisy user-generated content, making this translation task more challenging. In this work, we introduce a joint paraphrasing task of creole translation and text normalization of Singlish messages, which can shed light on how to process other language varieties and dialects. We formulate the task in three different linguistic dimensions: lexical level normalization, syntactic level editing, and semantic level rewriting. We build an annotated dataset of Singlish-to-Standard English messages, and report performance on a perturbation-resilient sequence-to-sequence model. Experimental results show that the model produces reasonable generation results, and can improve the performance of downstream tasks like stance detection.
Sequence-to-sequence deep neural models fine-tuned for abstractive summarization can achieve great performance on datasets with enough human annotations. Yet, it has been shown that they have not reached their full potential, with a wide gap between the top beam search output and the oracle beam. Recently, re-ranking methods have been proposed, to learn to select a better summary candidate. However, such methods are limited by the summary quality aspects captured by the first-stage candidates. To bypass this limitation, we propose a new paradigm in second-stage abstractive summarization called SummaFusion that fuses several summary candidates to produce a novel abstractive second-stage summary. Our method works well on several summarization datasets, improving both the ROUGE scores and qualitative properties of fused summaries. It is especially good when the candidates to fuse are worse, such as in the few-shot setup where we set a new state-of-the art. We will make our code and checkpoints available at https://github.com/ntunlp/SummaFusion/.
One key challenge in multi-document summarization is the generated summary is often less coherent compared to single document summarization due to the larger heterogeneity of the input source content. In this work, we propose a generic framework to jointly consider coherence and informativeness in multi-document summarization and offers provisions to replace individual components based on the domain of source text. In particular, the framework characterizes coherence through verb transitions and entity mentions and takes advantage of syntactic parse trees and neural modeling for intra-sentential noise pruning. The framework cast the entire problem as an integer linear programming optimization problem with neural and non-neural models as linear components. We evaluate our method in the news and legal domains. The proposed approach consistently performs better than competitive baselines for both objective metrics and human evaluation.
Augmentation of task-oriented dialogues has followed standard methods used for plain-text such as back-translation, word-level manipulation, and paraphrasing despite its richly annotated structure. In this work, we introduce an augmentation framework that utilizes belief state annotations to match turns from various dialogues and form new synthetic dialogues in a bottom-up manner. Unlike other augmentation strategies, it operates with as few as five examples. Our augmentation strategy yields significant improvements when both adapting a DST model to a new domain, and when adapting a language model to the DST task, on evaluations with TRADE and TOD-BERT models. Further analysis shows that our model performs better on seen values during training, and it is also more robust to unseen values. We conclude that exploiting belief state annotations enhances dialogue augmentation and results in improved models in n-shot training scenarios.
Text style transfer is an important task in controllable language generation. Supervised approaches have pushed performance improvement on style-oriented rewriting such as formality conversion. However, challenges remain due to the scarcity of large-scale parallel data in many domains. While unsupervised approaches do not rely on annotated sentence pairs for each style, they are often plagued with instability issues such as mode collapse or quality degradation. To take advantage of both supervised and unsupervised paradigms and tackle the challenges, in this work, we propose a semi-supervised framework for text style transfer. First, the learning process is bootstrapped with supervision guided by automatically constructed pseudo-parallel pairs using lexical and semantic-based methods. Then the model learns from unlabeled data via reinforcement rewards. Specifically, we propose to improve the sequence-to-sequence policy gradient via stepwise reward optimization, providing fine-grained learning signals and stabilizing the reinforced learning process. Experimental results show that the proposed approach achieves state-of-the-art performance on multiple datasets, and produces effective generation with as minimal as 10% of training data.
Neural module networks (NMN) have achieved success in image-grounded tasks such as Visual Question Answering (VQA) on synthetic images. However, very limited work on NMN has been studied in the video-grounded dialogue tasks. These tasks extend the complexity of traditional visual tasks with the additional visual temporal variance and language cross-turn dependencies. Motivated by recent NMN approaches on image-grounded tasks, we introduce Video-grounded Neural Module Network (VGNMN) to model the information retrieval process in video-grounded language tasks as a pipeline of neural modules. VGNMN first decomposes all language components in dialogues to explicitly resolve any entity references and detect corresponding action-based inputs from the question. The detected entities and actions are used as parameters to instantiate neural module networks and extract visual cues from the video. Our experiments show that VGNMN can achieve promising performance on a challenging video-grounded dialogue benchmark as well as a video QA benchmark.
Designed for tracking user goals in dialogues, a dialogue state tracker is an essential component in a dialogue system. However, the research of dialogue state tracking has largely been limited to unimodality, in which slots and slot values are limited by knowledge domains (e.g. restaurant domain with slots of restaurant name and price range) and are defined by specific database schema. In this paper, we propose to extend the definition of dialogue state tracking to multimodality. Specifically, we introduce a novel dialogue state tracking task to track the information of visual objects that are mentioned in video-grounded dialogues. Each new dialogue utterance may introduce a new video segment, new visual objects, or new object attributes and a state tracker is required to update these information slots accordingly. We created a new synthetic benchmark and designed a novel baseline, Video-Dialogue Transformer Network (VDTN), for this task. VDTN combines both object-level features and segment-level features and learns contextual dependencies between videos and dialogues to generate multimodal dialogue states. We optimized VDTN for a state generation task as well as a self-supervised video understanding task which recovers video segment or object representations. Finally, we trained VDTN to use the decoded states in a response prediction task. Together with comprehensive ablation and qualitative analysis, we discovered interesting insights towards building more capable multimodal dialogue systems.
Although fine-tuning pre-trained backbones produces fluent and grammatically-correct text in various language generation tasks, factual consistency in abstractive summarization remains challenging. This challenge is especially thorny for dialogue summarization, where neural models often make inaccurate associations between personal named entities and their respective actions. To tackle this type of hallucination, we present an entity-based de-noising model via text perturbation on reference summaries. We then apply this proposed approach in beam search validation, conditional training augmentation, and inference post-editing. Experimental results on the SAMSum corpus show that state-of-the-art models equipped with our proposed method achieve generation quality improvement in both automatic evaluation and human assessment.
While multi-party conversations are often less structured than monologues and documents, they are implicitly organized by semantic level correlations across the interactive turns, and dialogue discourse analysis can be applied to predict the dependency structure and relations between the elementary discourse units, and provide feature-rich structural information for downstream tasks. However, the existing corpora with dialogue discourse annotation are collected from specific domains with limited sample sizes, rendering the performance of data-driven approaches poor on incoming dialogues without any domain adaptation. In this paper, we first introduce a Transformer-based parser, and assess its cross-domain performance. We next adopt three methods to gain domain integration from both data and language modeling perspectives to improve the generalization capability. Empirical results show that the neural parser can benefit from our proposed methods, and performs better on cross-domain dialogue samples.
Text discourse parsing weighs importantly in understanding information flow and argumentative structure in natural language, making it beneficial for downstream tasks. While previous work significantly improves the performance of RST discourse parsing, they are not readily applicable to practical use cases: (1) EDU segmentation is not integrated into most existing tree parsing frameworks, thus it is not straightforward to apply such models on newly-coming data. (2) Most parsers cannot be used in multilingual scenarios, because they are developed only in English. (3) Parsers trained from single-domain treebanks do not generalize well on out-of-domain inputs. In this work, we propose a document-level multilingual RST discourse parsing framework, which conducts EDU segmentation and discourse tree parsing jointly. Moreover, we propose a cross-translation augmentation strategy to enable the framework to support multilingual parsing and improve its domain generality. Experimental results show that our model achieves state-of-the-art performance on document-level multilingual RST parsing in all sub-tasks.
In this paper, we propose a controllable neural generation framework that can flexibly guide dialogue summarization with personal named entity planning. The conditional sequences are modulated to decide what types of information or what perspective to focus on when forming summaries to tackle the under-constrained problem in summarization tasks. This framework supports two types of use cases: (1) Comprehensive Perspective, which is a general-purpose case with no user-preference specified, considering summary points from all conversational interlocutors and all mentioned persons; (2) Focus Perspective, positioning the summary based on a user-specified personal named entity, which could be one of the interlocutors or one of the persons mentioned in the conversation. During training, we exploit occurrence planning of personal named entities and coreference information to improve temporal coherence and to minimize hallucination in neural generation. Experimental results show that our proposed framework generates fluent and factually consistent summaries under various planning controls using both objective metrics and human evaluations.
We introduce a synthetic dialogue generation framework, Velocidapter, which addresses the corpus availability problem for dialogue comprehension. Velocidapter augments datasets by simulating synthetic conversations for a task-oriented dialogue domain, requiring a small amount of bootstrapping work for each new domain. We evaluate the efficacy of our framework on a task-oriented dialogue comprehension dataset, MRCWOZ, which we curate by annotating questions for slots in the restaurant, taxi, and hotel domains of the MultiWOZ 2.2 dataset (Zang et al., 2020). We run experiments within a low-resource setting, where we pretrain a model on SQuAD, fine-tuning it on either a small original data or on the synthetic data generated by our framework. Velocidapter shows significant improvements using both the transformer-based BERTBase and BiDAF as base models. We further show that the framework is easy to use by novice users and conclude that Velocidapter can greatly help training over task-oriented dialogues, especially for low-resourced emerging domains.
Summarizing conversations via neural approaches has been gaining research traction lately, yet it is still challenging to obtain practical solutions. Examples of such challenges include unstructured information exchange in dialogues, informal interactions between speakers, and dynamic role changes of speakers as the dialogue evolves. Many of such challenges result in complex coreference links. Therefore, in this work, we investigate different approaches to explicitly incorporate coreference information in neural abstractive dialogue summarization models to tackle the aforementioned challenges. Experimental results show that the proposed approaches achieve state-of-the-art performance, implying it is useful to utilize coreference information in dialogue summarization. Evaluation results on factual correctness suggest such coreference-aware models are better at tracing the information flow among interlocutors and associating accurate status/actions with the corresponding interlocutors and person mentions.
Understanding human preferences, along with cultural and social nuances, lives at the heart of natural language understanding. Concretely, we present a new task and corpus for learning alignments between machine and human preferences. Our newly introduced problem is concerned with predicting the preferable options from two sentences describing scenarios that may involve social and cultural situations. Our problem is framed as a natural language inference task with crowd-sourced preference votes by human players, obtained from a gamified voting platform. We benchmark several state-of-the-art neural models, along with BERT and friends on this task. Our experimental results show that current state-of-the-art NLP models still leave much room for improvement.
Text discourse parsing plays an important role in understanding information flow and argumentative structure in natural language. Previous research under the Rhetorical Structure Theory (RST) has mostly focused on inducing and evaluating models from the English treebank. However, the parsing tasks for other languages such as German, Dutch, and Portuguese are still challenging due to the shortage of annotated data. In this work, we investigate two approaches to establish a neural, cross-lingual discourse parser via: (1) utilizing multilingual vector representations; and (2) adopting segment-level translation of the source content. Experiment results show that both methods are effective even with limited training data, and achieve state-of-the-art performance on cross-lingual, document-level discourse parsing on all sub-tasks.
While neural approaches have achieved significant improvement in machine comprehension tasks, models often work as a black-box, resulting in lower interpretability, which requires special attention in domains such as healthcare or education. Quantifying uncertainty helps pave the way towards more interpretable neural networks. In classification and regression tasks, Bayesian neural networks have been effective in estimating model uncertainty. However, inference time increases linearly due to the required sampling process in Bayesian neural networks. Thus speed becomes a bottleneck in tasks with high system complexity such as question-answering or dialogue generation. In this work, we propose a hybrid neural architecture to quantify model uncertainty using Bayesian weight approximation but boosts up the inference speed by 80% relative at test time, and apply it for a clinical dialogue comprehension task. The proposed approach is also used to enable active learning so that an updated model can be trained more optimally with new incoming data by selecting samples that are not well-represented in the current training scheme.
Video-grounded dialogues are very challenging due to (i) the complexity of videos which contain both spatial and temporal variations, and (ii) the complexity of user utterances which query different segments and/or different objects in videos over multiple dialogue turns. However, existing approaches to video-grounded dialogues often focus on superficial temporal-level visual cues, but neglect more fine-grained spatial signals from videos. To address this drawback, we proposed Bi-directional Spatio-Temporal Learning (BiST), a vision-language neural framework for high-resolution queries in videos based on textual cues. Specifically, our approach not only exploits both spatial and temporal-level information, but also learns dynamic information diffusion between the two feature spaces through spatial-to-temporal and temporal-to-spatial reasoning. The bidirectional strategy aims to tackle the evolving semantics of user queries in the dialogue setting. The retrieved visual cues are used as contextual information to construct relevant responses to the users. Our empirical results and comprehensive qualitative analysis show that BiST achieves competitive performance and generates reasonable responses on a large-scale AVSD benchmark. We also adapt our BiST models to the Video QA setting, and substantially outperform prior approaches on the TGIF-QA benchmark.
Building an end-to-end conversational agent for multi-domain task-oriented dialogues has been an open challenge for two main reasons. First, tracking dialogue states of multiple domains is non-trivial as the dialogue agent must obtain complete states from all relevant domains, some of which might have shared slots among domains as well as unique slots specifically for one domain only. Second, the dialogue agent must also process various types of information across domains, including dialogue context, dialogue states, and database, to generate natural responses to users. Unlike the existing approaches that are often designed to train each module separately, we propose “UniConv” - a novel unified neural architecture for end-to-end conversational systems in multi-domain task-oriented dialogues, which is designed to jointly train (i) a Bi-level State Tracker which tracks dialogue states by learning signals at both slot and domain level independently, and (ii) a Joint Dialogue Act and Response Generator which incorporates information from various input components and models dialogue acts and target responses simultaneously. We conduct comprehensive experiments in dialogue state tracking, context-to-text, and end-to-end settings on the MultiWOZ2.1 benchmark, achieving superior performance over competitive baselines.
Much progress has been made in text summarization, fueled by neural architectures using large-scale training corpora. However, in the news domain, neural models easily overfit by leveraging position-related features due to the prevalence of the inverted pyramid writing style. In addition, there is an unmet need to generate a variety of summaries for different users. In this paper, we propose a neural framework that can flexibly control summary generation by introducing a set of sub-aspect functions (i.e. importance, diversity, position). These sub-aspect functions are regulated by a set of control codes to decide which sub-aspect to focus on during summary generation. We demonstrate that extracted summaries with minimal position bias is comparable with those generated by standard models that take advantage of position preference. We also show that news summaries generated with a focus on diversity can be more preferred by human raters. These results suggest that a more flexible neural summarization framework providing more control options could be desirable in tailoring to different user preferences, which is useful since it is often impractical to articulate such preferences for different applications a priori.
We present set to ordered text, a natural language generation task applied to automatically generating discharge instructions from admission ICD (International Classification of Diseases) codes. This task differs from other natural language generation tasks in the following ways: (1) The input is a set of identifiable entities (ICD codes) where the relations between individual entity are not explicitly specified. (2) The output text is not a narrative description (e.g. news articles) composed from the input. Rather, inferences are made from the input (symptoms specified in ICD codes) to generate the output (instructions). (3) There is an optimal order in which each sentence (instruction) should appear in the output. Unlike most other tasks, neither the input (ICD codes) nor their corresponding symptoms appear in the output, so the ordering of the output instructions needs to be learned in an unsupervised fashion. Based on clinical intuition, we hypothesize that each instruction in the output is mapped to a subset of ICD codes specified in the input. We propose a neural architecture that jointly models (a) subset selection: choosing relevant subsets from a set of input entities; (b) content ordering: learning the order of instructions; and (c) text generation: representing the instructions corresponding to the selected subsets in natural language. In addition, we penalize redundancy during beam search to improve tractability for long text generation. Our model outperforms baseline models in BLEU scores and human evaluation. We plan to extend this work to other tasks such as recipe generation from ingredients.
Extractive summarization selects and concatenates the most essential text spans in a document. Most, if not all, neural approaches use sentences as the elementary unit to select content for summarization. However, semantic segments containing supplementary information or descriptive details are often nonessential in the generated summaries. In this work, we propose to exploit discourse-level segmentation as a finer-grained means to more precisely pinpoint the core content in a document. We investigate how the sub-sentential segmentation improves extractive summarization performance when content selection is modeled through two basic neural network architectures and a deep bi-directional transformer. Experiment results on the CNN/Daily Mail dataset show that discourse-level segmentation is effective in both cases. In particular, we achieve state-of-the-art performance when discourse-level segmentation is combined with our adapted contextual representation model.
Data for human-human spoken dialogues for research and development are currently very limited in quantity, variety, and sources; such data are even scarcer in healthcare. In this work, we investigate fast prototyping of a dialogue comprehension system by leveraging on minimal nurse-to-patient conversations. We propose a framework inspired by nurse-initiated clinical symptom monitoring conversations to construct a simulated human-human dialogue dataset, embodying linguistic characteristics of spoken interactions like thinking aloud, self-contradiction, and topic drift. We then adopt an established bidirectional attention pointer network on this simulated dataset, achieving more than 80% F1 score on a held-out test set from real-world nurse-to-patient conversations. The ability to automatically comprehend conversations in the healthcare domain by exploiting only limited data has implications for improving clinical workflows through red flag symptom detection and triaging capabilities. We demonstrate the feasibility for efficient and effective extraction, retrieval and comprehension of symptom checking information discussed in multi-turn human-human spoken conversations.
Comprehending multi-turn spoken conversations is an emerging research area, presenting challenges different from reading comprehension of passages due to the interactive nature of information exchange from at least two speakers. Unlike passages, where sentences are often the default semantic modeling unit, in multi-turn conversations, a turn is a topically coherent unit embodied with immediately relevant context, making it a linguistically intuitive segment for computationally modeling verbal interactions. Therefore, in this work, we propose a hierarchical attention neural network architecture, combining turn-level and word-level attention mechanisms, to improve spoken dialogue comprehension performance. Experiments are conducted on a multi-turn conversation dataset, where nurses inquire and discuss symptom information with patients. We empirically show that the proposed approach outperforms standard attention baselines, achieves more efficient learning outcomes, and is more robust to lengthy and out-of-distribution test samples.
Developing Video-Grounded Dialogue Systems (VGDS), where a dialogue is conducted based on visual and audio aspects of a given video, is significantly more challenging than traditional image or text-grounded dialogue systems because (1) feature space of videos span across multiple picture frames, making it difficult to obtain semantic information; and (2) a dialogue agent must perceive and process information from different modalities (audio, video, caption, etc.) to obtain a comprehensive understanding. Most existing work is based on RNNs and sequence-to-sequence architectures, which are not very effective for capturing complex long-term dependencies (like in videos). To overcome this, we propose Multimodal Transformer Networks (MTN) to encode videos and incorporate information from different modalities. We also propose query-aware attention through an auto-encoder to extract query-aware features from non-text modalities. We develop a training procedure to simulate token-level decoding to improve the quality of generated responses during inference. We get state of the art performance on Dialogue System Technology Challenge 7 (DSTC7). Our model also generalizes to another multimodal visual-grounded dialogue task, and obtains promising performance.
We investigate English pronunciation patterns in Singaporean children in relation to their American and British counterparts by conducting archetypal analysis on selected vowel pairs. Given that Singapore adopts British English as the institutional standard, one might expect Singaporean children to follow British pronunciation patterns, but we observe that Singaporean children also present similar patterns to Americans for TRAP-BATH spilt vowels: (1) British and Singaporean children both produce these vowels with a relatively lowered tongue height. (2) These vowels are more fronted for American and Singaporean children (p < 0.001). In addition, when comparing /æ/ and /ε/ productions, British speakers show the clearest distinction between the two vowels; Singaporean and American speakers exhibit a higher and more fronted tongue position for /æ/ (p < 0.001), causing /æ/ to be acoustically more similar to /ε/.
Finding that explicitly modeling structures leads to better generalization, we consider the task of predicting Cantonese pronunciations of logographs (Chinese characters) using logographs’ recursive structures. This task is a suitable case study for two reasons. First, logographs’ pronunciations depend on structures (i.e. the hierarchies of sub-units in logographs) Second, the quality of logographic structures is consistent since the structures are constructed automatically using a set of rules. Thus, this task is less affected by confounds such as varying quality between annotators. Empirical results show that modeling structures explicitly using treeLSTM outperforms LSTM baseline, reducing prediction error by 6.0% relative.
Graphemes of most languages encode pronunciation, though some are more explicit than others. Languages like Spanish have a straightforward mapping between its graphemes and phonemes, while this mapping is more convoluted for languages like English. Spoken languages such as Cantonese present even more challenges in pronunciation modeling: (1) they do not have a standard written form, (2) the closest graphemic origins are logographic Han characters, of which only a subset of these logographic characters implicitly encodes pronunciation. In this work, we propose a multimodal approach to predict the pronunciation of Cantonese logographic characters, using neural networks with a geometric representation of logographs and pronunciation of cognates in historically related languages. The proposed framework improves performance by 18.1% and 25.0% respective to unimodal and multimodal baselines.
The problem of sequence labelling in language understanding would benefit from approaches inspired by semantic priming phenomena. We propose that an attention-based RNN architecture can be used to simulate semantic priming for sequence labelling. Specifically, we employ pre-trained word embeddings to characterize the semantic relationship between utterances and labels. We validate the approach using varying sizes of the ATIS and MEDIA datasets, and show up to 1.4-1.9% improvement in F1 score. The developed framework can enable more explainable and generalizable spoken language understanding systems.
Transliteration is defined as phonetic translation of names across languages. Transliteration of Named Entities (NEs) is necessary in many applications, such as machine translation, corpus alignment, cross-language IR, information extraction and automatic lexicon acquisition. All such systems call for high-performance transliteration, which is the focus of shared task in the NEWS 2018 workshop. The objective of the shared task is to promote machine transliteration research by providing a common benchmarking platform for the community to evaluate the state-of-the-art technologies.
This report presents the results from the Named Entity Transliteration Shared Task conducted as part of The Seventh Named Entities Workshop (NEWS 2018) held at ACL 2018 in Melbourne, Australia. Similar to previous editions of NEWS, the Shared Task featured 19 tasks on proper name transliteration, including 13 different languages and two different Japanese scripts. A total of 6 teams from 8 different institutions participated in the evaluation, submitting 424 runs, involving different transliteration methodologies. Four performance metrics were used to report the evaluation results. The NEWS shared task on machine transliteration has successfully achieved its objectives by providing a common ground for the research community to conduct comparative evaluations of state-of-the-art technologies that will benefit the future research and development in this area.
This paper reports the results of our trans-literation experiments conducted on NEWS 2018 Shared Task dataset. We focus on creating the baseline systems trained using two open-source, statistical transliteration tools, namely Sequitur and Moses. We discuss the pre-processing steps performed on this dataset for both the systems. We also provide a re-ranking system which uses top hypotheses from Sequitur and Moses to create a consolidated list of transliterations. The results obtained from each of these models can be used to present a good starting point for the participating teams.
Acquiring labeled speech for low-resource languages is a difficult task in the absence of native speakers of the language. One solution to this problem involves collecting speech transcriptions from crowd workers who are foreign or non-native speakers of a given target language. From these mismatched transcriptions, one can derive probabilistic phone transcriptions that are defined over the set of all target language phones using a noisy channel model. This paper extends prior work on deriving probabilistic transcriptions (PTs) from mismatched transcriptions by 1) modelling multilingual channels and 2) introducing a clustering-based phonetic mapping technique to improve the quality of PTs. Mismatched crowdsourcing for multilingual channels has certain properties of projection mapping, e.g., it can be interpreted as a clustering based on singular value decomposition of the segment alignments. To this end, we explore the use of distinctive feature weights, lexical tone confusions, and a two-step clustering algorithm to learn projections of phoneme segments from mismatched multilingual transcriber languages to the target language. We evaluate our techniques using mismatched transcriptions for Cantonese speech acquired from native English and Mandarin speakers. We observe a 5-9% relative reduction in phone error rate for the predicted Cantonese phone transcriptions using our proposed techniques compared with the previous PT method.