Niranjan Balasubramanian


2024

pdf bib
AppWorld: A Controllable World of Apps and People for Benchmarking Interactive Coding Agents
Harsh Trivedi | Tushar Khot | Mareike Hartmann | Ruskin Manku | Vinty Dong | Edward Li | Shashank Gupta | Ashish Sabharwal | Niranjan Balasubramanian
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Autonomous agents that address day-to-day digital tasks (e.g., ordering groceries for a household), must not only operate multiple apps (e.g., notes, messaging, shopping app) via APIs, but also generate rich code with complex control flow in an iterative manner based on their interaction with the environment. However, existing benchmarks for tool use are inadequate, as they only cover tasks that require a simple sequence of API calls. To remedy this gap, we built AppWorld Engine, a high-quality execution environment (60K lines of code) of 9 day-to-day apps operable via 457 APIs and populated with realistic digital activities simulating the lives of ~100 fictitious users. We then created AppWorld Benchmark (40K lines of code), a suite of 750 natural, diverse, and challenging autonomous agent tasks requiring rich and interactive code generation. It supports robust programmatic evaluation with state-based unit tests, allowing for different ways of completing a task while also checking for unexpected changes, i.e., collateral damage. The state-of-the-art LLM, GPT4O, solves only ~49% of our ‘normal’ tasks and ~30% of ‘challenge’ tasks, while other models solve at least 16% fewer. This highlights the benchmark’s difficulty and AppWorld’s potential to push the frontiers of interactive coding agents.

pdf bib
CaT-Bench: Benchmarking Language Model Understanding of Causal and Temporal Dependencies in Plans
Yash Kumar Lal | Vanya Cohen | Nathanael Chambers | Niranjan Balasubramanian | Ray Mooney
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Understanding the abilities of LLMs to reason about natural language plans, such as instructional text and recipes, is critical to reliably using them in decision-making systems. A fundamental aspect of plans is the temporal order in which their steps need to be executed, which reflects the underlying causal dependencies between them. We introduce CaT-Bench, a benchmark of Step Order Prediction questions, which test whether a step must necessarily occur before or after another in cooking recipe plans. We use this to evaluate how well frontier LLMs understand causal and temporal dependencies. We find that SOTA LLMs are underwhelming (best zero-shot is only 0.59 in F1), and are biased towards predicting dependence more often, perhaps relying on temporal order of steps as a heuristic. While prompting for explanations and using few-shot examples improve performance, the best F1 result is only 0.73. Further, human evaluation of explanations along with answer correctness show that, on average, humans do not agree with model reasoning. Surprisingly, we also find that explaining after answering leads to better performance than normal chain-of-thought prompting, and LLM answers are not consistent across questions about the same step pairs. Overall, results show that LLMs’ ability to detect dependence between steps has significant room for improvement.

pdf bib
Large Human Language Models: A Need and the Challenges
Nikita Soni | H. Andrew Schwartz | João Sedoc | Niranjan Balasubramanian
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

As research in human-centered NLP advances, there is a growing recognition of the importance of incorporating human and social factors into NLP models. At the same time, our NLP systems have become heavily reliant on LLMs, most of which do not model authors. To build NLP systems that can truly understand human language, we must better integrate human contexts into LLMs. This brings to the fore a range of design considerations and challenges in terms of what human aspects to capture, how to represent them, and what modeling strategies to pursue. To address these, we advocate for three positions toward creating large human language models (LHLMs) using concepts from psychological and behavioral sciences: First, LM training should include the human context. Second, LHLMs should recognize that people are more than their group(s). Third, LHLMs should be able to account for the dynamic and temporally-dependent nature of the human context. We refer to relevant advances and present open challenges that need to be addressed and their possible solutions in realizing these goals.

pdf bib
Comparing Pre-trained Human Language Models: Is it Better with Human Context as Groups, Individual Traits, or Both?
Nikita Soni | Niranjan Balasubramanian | H. Andrew Schwartz | Dirk Hovy
Proceedings of the 14th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis

Pre-trained language models consider the context of neighboring words and documents but lack any author context of the human generating the text. However, language depends on the author’s states, traits, social, situational, and environmental attributes, collectively referred to as human context (Soni et al., 2024). Human-centered natural language processing requires incorporating human context into language models. Currently, two methods exist: pre-training with 1) group-wise attributes (e.g., over-45-year-olds) or 2) individual traits. Group attributes are simple but coarse — not all 45-year-olds write the same way — while individual traits allow for more personalized representations, but require more complex modeling and data. It is unclear which approach benefits what tasks. We compare pre-training models with human context via 1) group attributes, 2) individual users, and 3) a combined approach on five user- and document-level tasks. Our results show that there is no best approach, but that human-centered language modeling holds avenues for different methods.

2023

pdf bib
NEUROSTRUCTURAL DECODING: Neural Text Generation with Structural Constraints
Mohaddeseh Bastan | Mihai Surdeanu | Niranjan Balasubramanian
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Text generation often involves producing coherent and grammatically correct texts that also satisfy a given set of semantic constraints. While most approaches for conditional text generation have primarily focused on lexical constraints, they often struggle to effectively incorporate syntactic constraints, which provide a richer language for approximating semantic constraints. We address this gap by introducing NeuroStructural Decoding, a new decoding algorithm that incorporates syntactic constraints to further improve the quality of the generated text. We build NeuroStructural Decoding on the NeuroLogic Decoding (Lu etal. 2021) algorithm, which enables language generation models to produce fluent text while satisfying complex lexical constraints. Our algorithm is powerful and scalable. It tracks lexico-syntactic constraints (e.g., we need to observe dog as subject and ball as object)during decoding by parsing the partial generations at each step. To this end, we adapt a dependency parser to generate parses for incomplete sentences. Our approach is evaluated on three different language generation tasks, and the results show improved performance in both lexical and syntactic metrics compared to previous methods. The results suggest this is a promising solution for integrating fine-grained controllable generation into the conventional beam search decoding.

pdf bib
Interleaving Retrieval with Chain-of-Thought Reasoning for Knowledge-Intensive Multi-Step Questions
Harsh Trivedi | Niranjan Balasubramanian | Tushar Khot | Ashish Sabharwal
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Prompting-based large language models (LLMs) are surprisingly powerful at generating natural language reasoning steps or Chains-of-Thoughts (CoT) for multi-step question answering (QA). They struggle, however, when the necessary knowledge is either unavailable to the LLM or not up-to-date within its parameters. While using the question to retrieve relevant text from an external knowledge source helps LLMs, we observe that this one-step retrieve-and-read approach is insufficient for multi-step QA. Here, what to retrieve depends on what has already been derived, which in turn may depend on what was previously retrieved. To address this, we propose IRCoT, a new approach for multi-step QA that interleaves retrieval with steps (sentences) in a CoT, guiding the retrieval with CoT and in turn using retrieved results to improve CoT. Using IRCoT with GPT3 substantially improves retrieval (up to 21 points) as well as downstream QA (up to 15 points) on four datasets: HotpotQA, 2WikiMultihopQA, MuSiQue, and IIRC. We observe similar substantial gains in out-of-distribution (OOD) settings as well as with much smaller models such as Flan-T5-large without additional training. IRCoT reduces model hallucination, resulting in factually more accurate CoT reasoning.

pdf bib
Modeling Complex Event Scenarios via Simple Entity-focused Questions
Mahnaz Koupaee | Greg Durrett | Nathanael Chambers | Niranjan Balasubramanian
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Event scenarios are often complex and involve multiple event sequences connected through different entity participants. Exploring such complex scenarios requires an ability to branch through different sequences, something that is difficult to achieve with standard event language modeling. To address this, we propose a question-guided generation framework that models events in complex scenarios as answers to questions about participants. At any step in the generation process, the framework uses the previously-generated events as context, but generates the next event as an answer to one of three questions: what else a participant did, what else happened to a participant, or what else happened. The participants and the questions themselves can be sampled or be provided as input from a user, allowing for controllable exploration. Our empirical evaluation shows that this question-guided generation provides better coverage of participants, diverse events within a domain, comparable perplexities for modeling event sequences, and more effective control for interactive schema generation.

pdf bib
SAGEViz: SchemA GEneration and Visualization
Sugam Devare | Mahnaz Koupaee | Gautham Gunapati | Sayontan Ghosh | Sai Vallurupalli | Yash Kumar Lal | Francis Ferraro | Nathanael Chambers | Greg Durrett | Raymond Mooney | Katrin Erk | Niranjan Balasubramanian
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Schema induction involves creating a graph representation depicting how events unfold in a scenario. We present SAGEViz, an intuitive and modular tool that utilizes human-AI collaboration to create and update complex schema graphs efficiently, where multiple annotators (humans and models) can work simultaneously on a schema graph from any domain. The tool consists of two components: (1) a curation component powered by plug-and-play event language models to create and expand event sequences while human annotators validate and enrich the sequences to build complex hierarchical schemas, and (2) an easy-to-use visualization component to visualize schemas at varying levels of hierarchy. Using supervised and few-shot approaches, our event language models can continually predict relevant events starting from a seed event. We conduct a user study and show that users need less effort in terms of interaction steps with SAGEViz to generate schemas of better quality. We also include a video demonstrating the system.

pdf bib
Text-Derived Knowledge Helps Vision: A Simple Cross-modal Distillation for Video-based Action Anticipation
Sayontan Ghosh | Tanvi Aggarwal | Minh Hoai | Niranjan Balasubramanian
Findings of the Association for Computational Linguistics: EACL 2023

Anticipating future actions in a video is useful for many autonomous and assistive technologies. Prior action anticipation work mostly treat this as a vision modality problem, where the models learn the task information primarily from the video features in the action anticipation datasets. However, knowledge about action sequences can also be obtained from external textual data. In this work, we show how knowledge in pretrained language models can be adapted and distilled into vision based action anticipation models. We show that a simple distillation technique can achieve effective knowledge transfer and provide consistent gains on a strong vision model (Anticipative Vision Transformer) for two action anticipation datasets (3.5% relative gain on EGTEA-GAZE+ and 7.2% relative gain on EPIC-KITCHEN 55), giving a new state-of-the-art result.

pdf bib
Efficient Methods for Natural Language Processing: A Survey
Marcos Treviso | Ji-Ung Lee | Tianchu Ji | Betty van Aken | Qingqing Cao | Manuel R. Ciosici | Michael Hassid | Kenneth Heafield | Sara Hooker | Colin Raffel | Pedro H. Martins | André F. T. Martins | Jessica Zosa Forde | Peter Milder | Edwin Simpson | Noam Slonim | Jesse Dodge | Emma Strubell | Niranjan Balasubramanian | Leon Derczynski | Iryna Gurevych | Roy Schwartz
Transactions of the Association for Computational Linguistics, Volume 11

Recent work in natural language processing (NLP) has yielded appealing results from scaling model parameters and training data; however, using only scale to improve performance means that resource consumption also grows. Such resources include data, time, storage, or energy, all of which are naturally limited and unevenly distributed. This motivates research into efficient methods that require fewer resources to achieve similar results. This survey synthesizes and relates current methods and findings in efficient NLP. We aim to provide both guidance for conducting NLP under limited resources, and point towards promising research directions for developing more efficient methods.

pdf bib
PASTA: A Dataset for Modeling PArticipant STAtes in Narratives
Sayontan Ghosh | Mahnaz Koupaee | Isabella Chen | Francis Ferraro | Nathanael Chambers | Niranjan Balasubramanian
Transactions of the Association for Computational Linguistics, Volume 11

The events in a narrative are understood as a coherent whole via the underlying states of their participants. Often, these participant states are not explicitly mentioned, instead left to be inferred by the reader. A model that understands narratives should likewise infer these implicit states, and even reason about the impact of changes to these states on the narrative. To facilitate this goal, we introduce a new crowdsourced English-language, Participant States dataset, PASTA. This dataset contains inferable participant states; a counterfactual perturbation to each state; and the changes to the story that would be necessary if the counterfactual were true. We introduce three state-based reasoning tasks that test for the ability to infer when a state is entailed by a story, to revise a story conditioned on a counterfactual state, and to explain the most likely state change given a revised story. Experiments show that today’s LLMs can reason about states to some degree, but there is large room for improvement, especially in problems requiring access and ability to reason with diverse types of knowledge (e.g., physical, numerical, factual).1

2022

pdf bib
Using Commonsense Knowledge to Answer Why-Questions
Yash Kumar Lal | Niket Tandon | Tanvi Aggarwal | Horace Liu | Nathanael Chambers | Raymond Mooney | Niranjan Balasubramanian
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Answering questions in narratives about why events happened often requires commonsense knowledge external to the text. What aspects of this knowledge are available in large language models? What aspects can be made accessible via external commonsense resources? We study these questions in the context of answering questions in the TellMeWhy dataset using COMET as a source of relevant commonsense relations. We analyze the effects of model size (T5 and GPT3) along with methods of injecting knowledge (COMET) into these models. Results show that the largest models, as expected, yield substantial improvements over base models. Injecting external knowledge helps models of various sizes, but the amount of improvement decreases with larger model size. We also find that the format in which knowledge is provided is critical, and that smaller models benefit more from larger amounts of knowledge. Finally, we develop an ontology of knowledge types and analyze the relative coverage of the models across these categories.

pdf bib
Teaching Broad Reasoning Skills for Multi-Step QA by Generating Hard Contexts
Harsh Trivedi | Niranjan Balasubramanian | Tushar Khot | Ashish Sabharwal
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Question-answering datasets require a broad set of reasoning skills. We show how to use question decompositions to teach language models these broad reasoning skills in a robust fashion. Specifically, we use widely available QDMR representations to programmatically create hard-to-cheat synthetic contexts for real questions in six multi-step reasoning datasets. These contexts are carefully designed to avoid common reasoning shortcuts prevalent in real contexts that prevent models from learning the right skills. This results in a pretraining dataset, named TeaBReaC, containing 525K multi-step questions (with associated formal programs) covering about 900 reasoning patterns. We show that pretraining standard language models (LMs) on TeaBReaC before fine-tuning them on target datasets improves their performance by up to 13 F1 points across 4 multi-step QA datasets, with up to 21 point gain on more complex questions. The resulting models also demonstrate higher robustness, with a 5-8 F1 point improvement on two contrast sets. Furthermore, TeaBReaC pretraining substantially improves model performance and robustness even when starting with numerate LMs pretrained using recent methods (e.g., PReasM, POET). Our work thus shows how to effectively use decomposition-guided contexts to robustly teach multi-step reasoning.

pdf bib
POQue: Asking Participant-specific Outcome Questions for a Deeper Understanding of Complex Events
Sai Vallurupalli | Sayontan Ghosh | Katrin Erk | Niranjan Balasubramanian | Francis Ferraro
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Knowledge about outcomes is critical for complex event understanding but is hard to acquire.We show that by pre-identifying a participant in a complex event, crowdworkers are ableto (1) infer the collective impact of salient events that make up the situation, (2) annotate the volitional engagement of participants in causing the situation, and (3) ground theoutcome of the situation in state changes of the participants. By creating a multi-step interface and a careful quality control strategy, we collect a high quality annotated dataset of8K short newswire narratives and ROCStories with high inter-annotator agreement (0.74-0.96weighted Fleiss Kappa). Our dataset, POQUe (Participant Outcome Questions), enables theexploration and development of models that address multiple aspects of semantic understanding. Experimentally, we show that current language models lag behind human performance in subtle ways through our task formulations that target abstract and specific comprehension of a complex event, its outcome, and a participant’s influence over the event culmination.

pdf bib
Human Language Modeling
Nikita Soni | Matthew Matero | Niranjan Balasubramanian | H. Andrew Schwartz
Findings of the Association for Computational Linguistics: ACL 2022

Natural language is generated by people, yet traditional language modeling views words or documents as if generated independently. Here, we propose human language modeling (HuLM), a hierarchical extension to the language modeling problem where by a human- level exists to connect sequences of documents (e.g. social media messages) and capture the notion that human language is moderated by changing human states. We introduce, HaRT, a large-scale transformer model for solving HuLM, pre-trained on approximately 100,000 social media users, and demonstrate it’s effectiveness in terms of both language modeling (perplexity) for social media and fine-tuning for 4 downstream tasks spanning document- and user-levels. Results on all tasks meet or surpass the current state-of-the-art.

pdf bib
BioNLI: Generating a Biomedical NLI Dataset Using Lexico-semantic Constraints for Adversarial Examples
Mohaddeseh Bastan | Mihai Surdeanu | Niranjan Balasubramanian
Findings of the Association for Computational Linguistics: EMNLP 2022

Natural language inference (NLI) is critical in many domains requiring complex decision-making, such as the biomedical domain. We introduce a novel semi-supervised procedure that bootstraps biomedical NLI datasets from positive entailment examples present in abstracts of biomedical publications. We focus on challenging texts where the hypothesis includes mechanistic information such as biochemical interactions between two entities. A key contribution of this work is automating the creation of negative examples that are informative without being simplistic. We generate a range of negative examples using nine strategies that manipulate the structure of the underlying mechanisms both with rules, e.g., flip the roles of the entities in the interaction, and, more importantly, by imposing the perturbed conditions as logical constraints in a neuro-logical decoding system (CITATION).We use this procedure to create a novel dataset for NLI in the biomedical domain, called . The accuracy of neural classifiers on this dataset is in the mid 70s F1, which indicates that this NLI task remains to be solved. Critically, we observe that the performance on the different classes of negative examples varies widely, from 97% F1 on the simple negative examples that change the role of the entities in the hypothesis, to barely better than chance on the negative examples generated using neuro-logic decoding.

pdf bib
SpecNFS: A Challenge Dataset Towards Extracting Formal Models from Natural Language Specifications
Sayontan Ghosh | Amanpreet Singh | Alex Merenstein | Wei Su | Scott A. Smolka | Erez Zadok | Niranjan Balasubramanian
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Can NLP assist in building formal models for verifying complex systems? We study this challenge in the context of parsing Network File System (NFS) specifications. We define a semantic-dependency problem over SpecIR, a representation language we introduce to model sentences appearing in NFS specification documents (RFCs) as IF-THEN statements, and present an annotated dataset of 1,198 sentences. We develop and evaluate semantic-dependency parsing systems for this problem. Evaluations show that even when using a state-of-the-art language model, there is significant room for improvement, with the best models achieving an F1 score of only 60.5 and 33.3 in the named-entity-recognition and dependency-link-prediction sub-tasks, respectively. We also release additional unlabeled data and other domain-related texts. Experiments show that these additional resources increase the F1 measure when used for simple domain-adaption and transfer-learning-based approaches, suggesting fruitful directions for further research

pdf bib
SuMe: A Dataset Towards Summarizing Biomedical Mechanisms
Mohaddeseh Bastan | Nishant Shankar | Mihai Surdeanu | Niranjan Balasubramanian
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Can language models read biomedical texts and explain the biomedical mechanisms discussed? In this work we introduce a biomedical mechanism summarization task. Biomedical studies often investigate the mechanisms behind how one entity (e.g., a protein or a chemical) affects another in a biological context. The abstracts of these publications often include a focused set of sentences that present relevant supporting statements regarding such relationships, associated experimental evidence, and a concluding sentence that summarizes the mechanism underlying the relationship. We leverage this structure and create a summarization task, where the input is a collection of sentences and the main entities in an abstract, and the output includes the relationship and a sentence that summarizes the mechanism. Using a small amount of manually labeled mechanism sentences, we train a mechanism sentence classifier to filter a large biomedical abstract collection and create a summarization dataset with 22k instances. We also introduce conclusion sentence generation as a pretraining task with 611k instances. We benchmark the performance of large bio-domain language models. We find that while the pretraining task help improves performance, the best model produces acceptable mechanism outputs in only 32% of the instances, which shows the task presents significant challenges in biomedical language understanding and summarization.

pdf bib
MuSiQue: Multihop Questions via Single-hop Question Composition
Harsh Trivedi | Niranjan Balasubramanian | Tushar Khot | Ashish Sabharwal
Transactions of the Association for Computational Linguistics, Volume 10

Multihop reasoning remains an elusive goal as existing multihop benchmarks are known to be largely solvable via shortcuts. Can we create a question answering (QA) dataset that, by construction, requires proper multihop reasoning? To this end, we introduce a bottom–up approach that systematically selects composable pairs of single-hop questions that are connected, that is, where one reasoning step critically relies on information from another. This bottom–up methodology lets us explore a vast space of questions and add stringent filters as well as other mechanisms targeting connected reasoning. It provides fine-grained control over the construction process and the properties of the resulting k-hop questions. We use this methodology to create MuSiQue-Ans, a new multihop QA dataset with 25K 2–4 hop questions. Relative to existing datasets, MuSiQue-Ans is more difficult overall (3× increase in human–machine gap), and harder to cheat via disconnected reasoning (e.g., a single-hop model has a 30-point drop in F1). We further add unanswerable contrast questions to produce a more stringent dataset, MuSiQue-Full. We hope our datasets will help the NLP community develop models that perform genuine multihop reasoning.1

2021

pdf bib
IrEne: Interpretable Energy Prediction for Transformers
Qingqing Cao | Yash Kumar Lal | Harsh Trivedi | Aruna Balasubramanian | Niranjan Balasubramanian
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Existing software-based energy measurements of NLP models are not accurate because they do not consider the complex interactions between energy consumption and model execution. We present IrEne, an interpretable and extensible energy prediction system that accurately predicts the inference energy consumption of a wide range of Transformer-based NLP models. IrEne constructs a model tree graph that breaks down the NLP model into modules that are further broken down into low-level machine learning (ML) primitives. IrEne predicts the inference energy consumption of the ML primitives as a function of generalizable features and fine-grained runtime resource usage. IrEne then aggregates these low-level predictions recursively to predict the energy of each module and finally of the entire model. Experiments across multiple Transformer models show IrEne predicts inference energy consumption of transformer models with an error of under 7% compared to the ground truth. In contrast, existing energy models see an error of over 50%. We also show how IrEne can be used to conduct energy bottleneck analysis and to easily evaluate the energy impact of different architectural choices. We release the code and data at https://github.com/StonyBrookNLP/irene.

pdf bib
Don’t Let Discourse Confine Your Model: Sequence Perturbations for Improved Event Language Models
Mahnaz Koupaee | Greg Durrett | Nathanael Chambers | Niranjan Balasubramanian
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Event language models represent plausible sequences of events. Most existing approaches train autoregressive models on text, which successfully capture event co-occurrence but unfortunately constrain the model to follow the discourse order in which events are presented. Other domains may employ different discourse orders, and for many applications, we may care about different notions of ordering (e.g., temporal) or not care about ordering at all (e.g., when predicting related events in a schema). We propose a simple yet surprisingly effective strategy for improving event language models by perturbing event sequences so we can relax model dependence on text order. Despite generating completely synthetic event orderings, we show that this technique improves the performance of the event language models on both applications and out-of-domain events data.

pdf bib
Summarize-then-Answer: Generating Concise Explanations for Multi-hop Reading Comprehension
Naoya Inoue | Harsh Trivedi | Steven Sinha | Niranjan Balasubramanian | Kentaro Inui
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

How can we generate concise explanations for multi-hop Reading Comprehension (RC)? The current strategies of identifying supporting sentences can be seen as an extractive question-focused summarization of the input text. However, these extractive explanations are not necessarily concise i.e. not minimally sufficient for answering a question. Instead, we advocate for an abstractive approach, where we propose to generate a question-focused, abstractive summary of input paragraphs and then feed it to an RC system. Given a limited amount of human-annotated abstractive explanations, we train the abstractive explainer in a semi-supervised manner, where we start from the supervised model and then train it further through trial and error maximizing a conciseness-promoted reward function. Our experiments demonstrate that the proposed abstractive explainer can generate more compact explanations than an extractive explainer with limited supervision (only 2k instances) while maintaining sufficiency.

pdf bib
IrEne-viz: Visualizing Energy Consumption of Transformer Models
Yash Kumar Lal | Reetu Singh | Harsh Trivedi | Qingqing Cao | Aruna Balasubramanian | Niranjan Balasubramanian
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

IrEne is an energy prediction system that accurately predicts the interpretable inference energy consumption of a wide range of Transformer-based NLP models. We present the IrEne-viz tool, an online platform for visualizing and exploring energy consumption of various Transformer-based models easily. Additionally, we release a public API that can be used to access granular information about energy consumption of transformer models and their components. The live demo is available at http://stonybrooknlp.github.io/irene/demo/.

pdf bib
TellMeWhy: A Dataset for Answering Why-Questions in Narratives
Yash Kumar Lal | Nathanael Chambers | Raymond Mooney | Niranjan Balasubramanian
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
On the Distribution, Sparsity, and Inference-time Quantization of Attention Values in Transformers
Tianchu Ji | Shraddhan Jain | Michael Ferdman | Peter Milder | H. Andrew Schwartz | Niranjan Balasubramanian
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
MeLT: Message-Level Transformer with Masked Document Representations as Pre-Training for Stance Detection
Matthew Matero | Nikita Soni | Niranjan Balasubramanian | H. Andrew Schwartz
Findings of the Association for Computational Linguistics: EMNLP 2021

Much of natural language processing is focused on leveraging large capacity language models, typically trained over single messages with a task of predicting one or more tokens. However, modeling human language at higher-levels of context (i.e., sequences of messages) is under-explored. In stance detection and other social media tasks where the goal is to predict an attribute of a message, we have contextual data that is loosely semantically connected by authorship. Here, we introduce Message-Level Transformer (MeLT) – a hierarchical message-encoder pre-trained over Twitter and applied to the task of stance prediction. We focus on stance prediction as a task benefiting from knowing the context of the message (i.e., the sequence of previous messages). The model is trained using a variant of masked-language modeling; where instead of predicting tokens, it seeks to generate an entire masked (aggregated) message vector via reconstruction loss. We find that applying this pre-trained masked message-level transformer to the downstream task of stance detection achieves F1 performance of 67%.

pdf bib
Toward Diverse Precondition Generation
Heeyoung Kwon | Nathanael Chambers | Niranjan Balasubramanian
Proceedings of *SEM 2021: The Tenth Joint Conference on Lexical and Computational Semantics

A typical goal for language understanding is to logically connect the events of a discourse, but often connective events are not described due to their commonsense nature. In order to address this deficit, we focus here on generating precondition events. Precondition generation can be framed as a sequence-to-sequence problem: given a target event, generate a possible precondition. However, in most real-world scenarios, an event can have several preconditions, which is not always suitable for standard seq2seq frameworks. We propose DiP, the Diverse Precondition generation system that can generate unique and diverse preconditions. DiP consists of three stages of the generative process – an event sampler, a candidate generator, and a post-processor. The event sampler provides control codes (precondition triggers) which the candidate generator uses to focus its generation. Post-processing further improves the results through re-ranking and filtering. Unlike other conditional generation systems, DiP automatically generates control codes without training on diverse examples. Analysis reveals that DiP improves the diversity of preconditions significantly compared to a beam search baseline. Also, manual evaluation shows that DiP generates more preconditions than a strong nucleus sampling baseline.

2020

pdf bib
DeFormer: Decomposing Pre-trained Transformers for Faster Question Answering
Qingqing Cao | Harsh Trivedi | Aruna Balasubramanian | Niranjan Balasubramanian
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Transformer-based QA models use input-wide self-attention – i.e. across both the question and the input passage – at all layers, causing them to be slow and memory-intensive. It turns out that we can get by without input-wide self-attention at all layers, especially in the lower layers. We introduce DeFormer, a decomposed transformer, which substitutes the full self-attention with question-wide and passage-wide self-attentions in the lower layers. This allows for question-independent processing of the input text representations, which in turn enables pre-computing passage representations reducing runtime compute drastically. Furthermore, because DeFormer is largely similar to the original model, we can initialize DeFormer with the pre-training weights of a standard transformer, and directly fine-tune on the target QA dataset. We show DeFormer versions of BERT and XLNet can be used to speed up QA by over 4.3x and with simple distillation-based losses they incur only a 1% drop in accuracy. We open source the code at https://github.com/StonyBrookNLP/deformer.

pdf bib
Modeling Label Semantics for Predicting Emotional Reactions
Radhika Gaonkar | Heeyoung Kwon | Mohaddeseh Bastan | Niranjan Balasubramanian | Nathanael Chambers
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Predicting how events induce emotions in the characters of a story is typically seen as a standard multi-label classification task, which usually treats labels as anonymous classes to predict. They ignore information that may be conveyed by the emotion labels themselves. We propose that the semantics of emotion labels can guide a model’s attention when representing the input story. Further, we observe that the emotions evoked by an event are often related: an event that evokes joy is unlikely to also evoke sadness. In this work, we explicitly model label classes via label embeddings, and add mechanisms that track label-label correlations both during training and inference. We also introduce a new semi-supervision strategy that regularizes for the correlations on unlabeled data. Our empirical evaluations show that modeling label semantics yields consistent benefits, and we advance the state-of-the-art on an emotion inference task.

pdf bib
Hierarchical Modeling for User Personality Prediction: The Role of Message-Level Attention
Veronica Lynn | Niranjan Balasubramanian | H. Andrew Schwartz
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Not all documents are equally important. Language processing is increasingly finding use as a supplement for questionnaires to assess psychological attributes of consenting individuals, but most approaches neglect to consider whether all documents of an individual are equally informative. In this paper, we present a novel model that uses message-level attention to learn the relative weight of users’ social media posts for assessing their five factor personality traits. We demonstrate that models with message-level attention outperform those with word-level attention, and ultimately yield state-of-the-art accuracies for all five traits by using both word and message attention in combination with past approaches (an average increase in Pearson r of 2.5%). In addition, examination of the high-signal posts identified by our model provides insight into the relationship between language and personality, helping to inform future work.

pdf bib
Author’s Sentiment Prediction
Mohaddeseh Bastan | Mahnaz Koupaee | Youngseo Son | Richard Sicoli | Niranjan Balasubramanian
Proceedings of the 28th International Conference on Computational Linguistics

Even though sentiment analysis has been well-studied on a wide range of domains, there hasn’tbeen much work on inferring author sentiment in news articles. To address this gap, we introducePerSenT, a crowd-sourced dataset that captures the sentiment of an author towards the mainentity in a news article. Our benchmarks of multiple strong baselines show that this is a difficultclassification task. BERT performs the best amongst the baselines. However, it only achievesa modest performance overall suggesting that fine-tuning document-level representations aloneisn’t adequate for this task. Making paragraph-level decisions and aggregating over the entiredocument is also ineffective. We present empirical and qualitative analyses that illustrate thespecific challenges posed by this dataset. We release this dataset with 5.3k documents and 38kparagraphs with 3.2k unique entities as a challenge in entity sentiment analysis.

pdf bib
Generating Narrative Text in a Switching Dynamical System
Noah Weber | Leena Shekhar | Heeyoung Kwon | Niranjan Balasubramanian | Nathanael Chambers
Proceedings of the 24th Conference on Computational Natural Language Learning

Early work on narrative modeling used explicit plans and goals to generate stories, but the language generation itself was restricted and inflexible. Modern methods use language models for more robust generation, but often lack an explicit representation of the scaffolding and dynamics that guide a coherent narrative. This paper introduces a new model that integrates explicit narrative structure with neural language models, formalizing narrative modeling as a Switching Linear Dynamical System (SLDS). A SLDS is a dynamical system in which the latent dynamics of the system (i.e. how the state vector transforms over time) is controlled by top-level discrete switching variables. The switching variables represent narrative structure (e.g., sentiment or discourse states), while the latent state vector encodes information on the current state of the narrative. This probabilistic formulation allows us to control generation, and can be learned in a semi-supervised fashion using both labeled and unlabeled data. Additionally, we derive a Gibbs sampler for our model that can “fill in” arbitrary parts of the narrative, guided by the switching variables. Our filled-in (English language) narratives outperform several baselines on both automatic and human evaluations

pdf bib
Is Multihop QA in DiRe Condition? Measuring and Reducing Disconnected Reasoning
Harsh Trivedi | Niranjan Balasubramanian | Tushar Khot | Ashish Sabharwal
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Has there been real progress in multi-hop question-answering? Models often exploit dataset artifacts to produce correct answers, without connecting information across multiple supporting facts. This limits our ability to measure true progress and defeats the purpose of building multi-hop QA datasets. We make three contributions towards addressing this. First, we formalize such undesirable behavior as disconnected reasoning across subsets of supporting facts. This allows developing a model-agnostic probe for measuring how much any model can cheat via disconnected reasoning. Second, using a notion of contrastive support sufficiency, we introduce an automatic transformation of existing datasets that reduces the amount of disconnected reasoning. Third, our experiments suggest that there hasn’t been much progress in multi-hop QA in the reading comprehension setting. For a recent large-scale model (XLNet), we show that only 18 points out of its answer F1 score of 72 on HotpotQA are obtained through multifact reasoning, roughly the same as that of a simpler RNN baseline. Our transformation substantially reduces disconnected reasoning (19 points in answer F1). It is complementary to adversarial approaches, yielding further reductions in conjunction.

pdf bib
Modeling Preconditions in Text with a Crowd-sourced Dataset
Heeyoung Kwon | Mahnaz Koupaee | Pratyush Singh | Gargi Sawhney | Anmol Shukla | Keerthi Kumar Kallur | Nathanael Chambers | Niranjan Balasubramanian
Findings of the Association for Computational Linguistics: EMNLP 2020

Preconditions provide a form of logical connection between events that explains why some events occur together and information that is complementary to the more widely studied relations such as causation, temporal ordering, entailment, and discourse relations. Modeling preconditions in text has been hampered in part due to the lack of large scale labeled data grounded in text. This paper introduces PeKo, a crowd-sourced annotation of preconditions between event pairs in newswire, an order of magnitude larger than prior text annotations. To complement this new corpus, we also introduce two challenge tasks aimed at modeling preconditions: (i) Precondition Identification – a standard classification task defined over pairs of event mentions, and (ii) Precondition Generation – a generative task aimed at testing a more general ability to reason about a given event. Evaluation on both tasks shows that modeling preconditions is challenging even for today’s large language models (LM). This suggests that precondition knowledge is not easily accessible in LM-derived representations alone. Our generation results show that fine-tuning an LM on PeKo yields better conditional relations than when trained on raw text or temporally-ordered corpora.

pdf bib
Towards Accurate and Reliable Energy Measurement of NLP Models
Qingqing Cao | Aruna Balasubramanian | Niranjan Balasubramanian
Proceedings of SustaiNLP: Workshop on Simple and Efficient Natural Language Processing

Accurate and reliable measurement of energy consumption is critical for making well-informed design choices when choosing and training large scale NLP models. In this work, we show that existing software-based energy estimations are not accurate because they do not take into account hardware differences and how resource utilization affects energy consumption. We conduct energy measurement experiments with four different models for a question answering task. We quantify the error of existing software-based energy estimations by using a hardware power meter that provides highly accurate energy measurements. Our key takeaway is the need for a more accurate energy estimation model that takes into account hardware variabilities and the non-linear relationship between resource utilization and energy consumption. We release the code and data at https://github.com/csarron/sustainlp2020-energy.

2019

pdf bib
Latent Part-of-Speech Sequences for Neural Machine Translation
Xuewen Yang | Yingru Liu | Dongliang Xie | Xin Wang | Niranjan Balasubramanian
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Learning target side syntactic structure has been shown to improve Neural Machine Translation (NMT). However, incorporating syntax through latent variables introduces additional complexity in inference, as the models need to marginalize over the latent syntactic structures. To avoid this, models often resort to greedy search which only allows them to explore a limited portion of the latent space. In this work, we introduce a new latent variable model, LaSyn, that captures the co-dependence between syntax and semantics, while allowing for effective and efficient inference over the latent space. LaSyn decouples direct dependence between successive latent variables, which allows its decoder to exhaustively search through the latent syntactic choices, while keeping decoding speed proportional to the size of the latent variable vocabulary. We implement LaSyn by modifying a transformer-based NMT system and design a neural expectation maximization algorithm that we regularize with part-of-speech information as the latent sequences. Evaluations on four different MT tasks show that incorporating target side syntax with LaSyn improves both translation quality, and also provides an opportunity to improve diversity.

pdf bib
PoMo: Generating Entity-Specific Post-Modifiers in Context
Jun Seok Kang | Robert Logan | Zewei Chu | Yang Chen | Dheeru Dua | Kevin Gimpel | Sameer Singh | Niranjan Balasubramanian
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

We introduce entity post-modifier generation as an instance of a collaborative writing task. Given a sentence about a target entity, the task is to automatically generate a post-modifier phrase that provides contextually relevant information about the entity. For example, for the sentence, “Barack Obama, _______, supported the #MeToo movement.”, the phrase “a father of two girls” is a contextually relevant post-modifier. To this end, we build PoMo, a post-modifier dataset created automatically from news articles reflecting a journalistic need for incorporating entity information that is relevant to a particular news event. PoMo consists of more than 231K sentences with post-modifiers and associated facts extracted from Wikidata for around 57K unique entities. We use crowdsourcing to show that modeling contextual relevance is necessary for accurate post-modifier generation. We adapt a number of existing generation approaches as baselines for this dataset. Our results show there is large room for improvement in terms of both identifying relevant facts to include (knowing which claims are relevant gives a >20% improvement in BLEU score), and generating appropriate post-modifier text for the context (providing relevant claims is not sufficient for accurate generation). We conduct an error analysis that suggests promising directions for future research.

pdf bib
Repurposing Entailment for Multi-Hop Question Answering Tasks
Harsh Trivedi | Heeyoung Kwon | Tushar Khot | Ashish Sabharwal | Niranjan Balasubramanian
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Question Answering (QA) naturally reduces to an entailment problem, namely, verifying whether some text entails the answer to a question. However, for multi-hop QA tasks, which require reasoning with multiple sentences, it remains unclear how best to utilize entailment models pre-trained on large scale datasets such as SNLI, which are based on sentence pairs. We introduce Multee, a general architecture that can effectively use entailment models for multi-hop QA tasks. Multee uses (i) a local module that helps locate important sentences, thereby avoiding distracting information, and (ii) a global module that aggregates information by effectively incorporating importance weights. Importantly, we show that both modules can use entailment functions pre-trained on a large scale NLI datasets. We evaluate performance on MultiRC and OpenBookQA, two multihop QA datasets. When using an entailment function pre-trained on NLI datasets, Multee outperforms QA models trained only on the target QA datasets and the OpenAI transformer models.

pdf bib
Tweet Classification without the Tweet: An Empirical Examination of User versus Document Attributes
Veronica Lynn | Salvatore Giorgi | Niranjan Balasubramanian | H. Andrew Schwartz
Proceedings of the Third Workshop on Natural Language Processing and Computational Social Science

NLP naturally puts a primary focus on leveraging document language, occasionally considering user attributes as supplemental. However, as we tackle more social scientific tasks, it is possible user attributes might be of primary importance and the document supplemental. Here, we systematically investigate the predictive power of user-level features alone versus document-level features for document-level tasks. We first show user attributes can sometimes carry more task-related information than the document itself. For example, a tweet-level stance detection model using only 13 user-level attributes (i.e. features that did not depend on the specific tweet) was able to obtain a higher F1 than the top-performing SemEval participant. We then consider multiple tasks and a wider range of user attributes, showing the performance of strong document-only models can often be improved (as in stance, sentiment, and sarcasm) with user attributes, particularly benefiting tasks with stable “trait-like” outcomes (e.g. stance) most relative to frequently changing “state-like” outcomes (e.g. sentiment). These results not only support the growing work on integrating user factors into predictive systems, but that some of our NLP tasks might be better cast primarily as user-level (or human) tasks.

2018

pdf bib
Residualized Factor Adaptation for Community Social Media Prediction Tasks
Mohammadzaman Zamani | H. Andrew Schwartz | Veronica Lynn | Salvatore Giorgi | Niranjan Balasubramanian
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Predictive models over social media language have shown promise in capturing community outcomes, but approaches thus far largely neglect the socio-demographic context (e.g. age, education rates, race) of the community from which the language originates. For example, it may be inaccurate to assume people in Mobile, Alabama, where the population is relatively older, will use words the same way as those from San Francisco, where the median age is younger with a higher rate of college education. In this paper, we present residualized factor adaptation, a novel approach to community prediction tasks which both (a) effectively integrates community attributes, as well as (b) adapts linguistic features to community attributes (factors). We use eleven demographic and socioeconomic attributes, and evaluate our approach over five different community-level predictive tasks, spanning health (heart disease mortality, percent fair/poor health), psychology (life satisfaction), and economics (percent housing price increase, foreclosure rate). Our evaluation shows that residualized factor adaptation significantly improves 4 out of 5 community-level outcome predictions over prior state-of-the-art for incorporating socio-demographic contexts.

pdf bib
Hierarchical Quantized Representations for Script Generation
Noah Weber | Leena Shekhar | Niranjan Balasubramanian | Nathanael Chambers
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Scripts define knowledge about how everyday scenarios (such as going to a restaurant) are expected to unfold. One of the challenges to learning scripts is the hierarchical nature of the knowledge. For example, a suspect arrested might plead innocent or guilty, and a very different track of events is then expected to happen. To capture this type of information, we propose an autoencoder model with a latent space defined by a hierarchy of categorical variables. We utilize a recently proposed vector quantization based approach, which allows continuous embeddings to be associated with each latent variable value. This permits the decoder to softly decide what portions of the latent hierarchy to condition on by attending over the value embeddings for a given setting. Our model effectively encodes and generates scripts, outperforming a recent language modeling-based method on several standard tasks, and allowing the autoencoder model to achieve substantially lower perplexity scores compared to the previous language modeling-based method.

pdf bib
The Fine Line between Linguistic Generalization and Failure in Seq2Seq-Attention Models
Noah Weber | Leena Shekhar | Niranjan Balasubramanian
Proceedings of the Workshop on Generalization in the Age of Deep Learning

Seq2Seq based neural architectures have become the go-to architecture to apply to sequence to sequence language tasks. Despite their excellent performance on these tasks, recent work has noted that these models typically do not fully capture the linguistic structure required to generalize beyond the dense sections of the data distribution (Ettinger et al., 2017), and as such, are likely to fail on examples from the tail end of the distribution (such as inputs that are noisy (Belinkov and Bisk, 2018), or of different length (Bentivogli et al., 2016)). In this paper we look at a model’s ability to generalize on a simple symbol rewriting task with a clearly defined structure. We find that the model’s ability to generalize this structure beyond the training distribution depends greatly on the chosen random seed, even when performance on the test set remains the same. This finding suggests that model’s ability to capture generalizable structure is highly sensitive, and more so, this sensitivity may not be apparent when evaluating the model on standard test sets.

2017

pdf bib
Human Centered NLP with User-Factor Adaptation
Veronica Lynn | Youngseo Son | Vivek Kulkarni | Niranjan Balasubramanian | H. Andrew Schwartz
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

We pose the general task of user-factor adaptation – adapting supervised learning models to real-valued user factors inferred from a background of their language, reflecting the idea that a piece of text should be understood within the context of the user that wrote it. We introduce a continuous adaptation technique, suited for real-valued user factors that are common in social science and bringing us closer to personalized NLP, adapting to each user uniquely. We apply this technique with known user factors including age, gender, and personality traits, as well as latent factors, evaluating over five tasks: POS tagging, PP-attachment, sentiment analysis, sarcasm detection, and stance detection. Adaptation provides statistically significant benefits for 3 of the 5 tasks: up to +1.2 points for PP-attachment, +3.4 points for sarcasm, and +3.0 points for stance.

2016

pdf bib
What’s in an Explanation? Characterizing Knowledge and Inference Requirements for Elementary Science Exams
Peter Jansen | Niranjan Balasubramanian | Mihai Surdeanu | Peter Clark
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

QA systems have been making steady advances in the challenging elementary science exam domain. In this work, we develop an explanation-based analysis of knowledge and inference requirements, which supports a fine-grained characterization of the challenges. In particular, we model the requirements based on appropriate sources of evidence to be used for the QA task. We create requirements by first identifying suitable sentences in a knowledge base that support the correct answer, then use these to build explanations, filling in any necessary missing information. These explanations are used to create a fine-grained categorization of the requirements. Using these requirements, we compare a retrieval and an inference solver on 212 questions. The analysis validates the gains of the inference solver, demonstrating that it answers more questions requiring complex inference, while also providing insights into the relative strengths of the solvers and knowledge sources. We release the annotated questions and explanations as a resource with broad utility for science exam QA, including determining knowledge base construction targets, as well as supporting information aggregation in automated inference.

pdf bib
Cross Sentence Inference for Process Knowledge
Samuel Louvan | Chetan Naik | Sadhana Kumaravel | Heeyoung Kwon | Niranjan Balasubramanian | Peter Clark
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

2015

pdf bib
Exploring Markov Logic Networks for Question Answering
Tushar Khot | Niranjan Balasubramanian | Eric Gribkoff | Ashish Sabharwal | Peter Clark | Oren Etzioni
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

2013

pdf bib
Generating Coherent Event Schemas at Scale
Niranjan Balasubramanian | Stephen Soderland | Mausam | Oren Etzioni
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing

2012

pdf bib
Constructing a Textual KB from a Biology TextBook
Peter Clark | Phil Harrison | Niranjan Balasubramanian | Oren Etzioni
Proceedings of the Joint Workshop on Automatic Knowledge Base Construction and Web-scale Knowledge Extraction (AKBC-WEKEX)

pdf bib
Rel-grams: A Probabilistic Model of Relations in Text
Niranjan Balasubramanian | Stephen Soderland | Mausam | Oren Etzioni
Proceedings of the Joint Workshop on Automatic Knowledge Base Construction and Web-scale Knowledge Extraction (AKBC-WEKEX)

Search
Co-authors
Fix data