Michael Zeng


2024

pdf bib
i-Code Studio: A Configurable and Composable Framework for Integrative AI
Yuwei Fang | Mahmoud Khademi | Chenguang Zhu | Ziyi Yang | Reid Pryzant | Yichong Xu | Yao Qian | Takuya Yoshioka | Lu Yuan | Michael Zeng | Xuedong Huang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Artificial General Intelligence (AGI) requires comprehensive understanding and generation capabilities for a variety of tasks spanning different modalities and functionalities. Integrative AI is one important direction to approach AGI, through combining multiple models to tackle complex multimodal tasks. However, there is a lack of a flexible and composable platform to facilitate efficient and effective model composition and coordination. In this paper, we propose the i-Code Studio, a configurable and composable framework for Integrative AI. The i-Code Studio orchestrates multiple pre-trained models in a finetuning-free fashion to conduct complex multimodal tasks. Instead of simple model composition, the i-Code Studio provides an integrative, flexible, and composable setting for developers to quickly and easily compose cutting-edge services and technologies tailored to their specific requirements. The i-Code Studio achieves impressive results on a variety of zero-shot multimodal tasks, such as video-to-text retrieval, speech-to-speech translation, and visual question answering. We also demonstrate how to quickly build a multimodal agent based on the i-Code Studio that can communicate and personalize for users. The project page with demonstrations and code is at https://i-code-studio.github.io/.

pdf bib
i-Code V2: An Autoregressive Generation Framework over Vision, Language, and Speech Data
Ziyi Yang | Mahmoud Khademi | Yichong Xu | Reid Pryzant | Yuwei Fang | Chenguang Zhu | Dongdong Chen | Yao Qian | Xuemei Gao | Yi-Ling Chen | Robert Gmyr | Naoyuki Kanda | Noel Codella | Bin Xiao | Yu Shi | Lu Yuan | Takuya Yoshioka | Michael Zeng | Xuedong Huang
Findings of the Association for Computational Linguistics: NAACL 2024

The convergence of text, visual, and audio data is crucial towards human-like artificial intelligence, however the current Vision-Language-Speech landscape is dominated by encoder-only models that lack generative abilities. We propose closing this gap with i-Code V2, one of the first models capable of generating natural language from any combination of Vision, Language, and Speech data. i-Code V2 leverages state-of-the-art single-modality encoders, combining their outputs with a new modality-fusing encoder to project combinations of modalities into a shared representational space. Language tokens are generated from these representations via an autoregressive decoder. i-Code V2 is pretrained end-to-end on a large collection of dual- and single-modality datasets with a novel text completion objective that can be generalized across arbitrary combinations of modalities. i-Code V2 matches or outperforms state-of-the-art single- and dual-modality baselines on 7 multimodal tasks, demonstrating the power of generative multimodal pretraining across a diversity of tasks and signals.

2023

pdf bib
Z-Code++: A Pre-trained Language Model Optimized for Abstractive Summarization
Pengcheng He | Baolin Peng | Song Wang | Yang Liu | Ruochen Xu | Hany Hassan | Yu Shi | Chenguang Zhu | Wayne Xiong | Michael Zeng | Jianfeng Gao | Xuedong Huang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

This paper presents Z-Code++, a new pre-trained language model optimized for abstractive text summarization. The model extends the state-of-the-art encoder-decoder model using three techniques. First, we use a two-phase pre-training to improve the model’s performance on low-resource summarization tasks. The model is first pre-trained using text corpora for language understanding, then is continually pre-trained on summarization corpora for grounded text generation. Second, we replace self-attention layers in the encoder with disentangled attention layers, where each word is represented using two vectors that encode its content and position, respectively. Third, we use fusion-in-encoder, a simple yet effective method of encoding long sequences in a hierarchical manner. Z-Code++ createsa new state-of-the-art on 9 of 13 text summarization tasks across 5 languages. Our model is parameter-efficient in that it outperforms the 600x larger PaLM540B on XSum, and the finetuned 200x larger GPT3175B on SAMSum. In zero-shot and few-shot settings, our model substantially outperforms the competing models.

pdf bib
UniSumm and SummZoo: Unified Model and Diverse Benchmark for Few-Shot Summarization
Yulong Chen | Yang Liu | Ruochen Xu | Ziyi Yang | Chenguang Zhu | Michael Zeng | Yue Zhang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The high annotation costs and diverse demands of various summarization tasks motivate the development of few-shot summarization. However, despite the emergence of many summarization tasks and datasets, the current training paradigm for few-shot summarization systems ignores potentially shareable knowledge in heterogeneous datasets. To this end, we propose UniSumm, a unified few-shot summarization model pre-trained with multiple summarization tasks and can be prefix-tuned to excel at any few-shot summarization task. Meanwhile, to better evaluate few-shot summarizers, under the principles of diversity and robustness, we assemble and release a new benchmark SummZoo. It consists of 8 summarization tasks with multiple sets of few-shot samples for each task, covering diverse domains. Experimental results and analysis show that UniSumm outperforms strong baselines by a large margin across all sub-tasks in SummZoo under both automatic and human evaluations and achieves comparable results in human evaluation compared with a GPT-3.5 model.

pdf bib
InheritSumm: A General, Versatile and Compact Summarizer by Distilling from GPT
Yichong Xu | Ruochen Xu | Dan Iter | Yang Liu | Shuohang Wang | Chenguang Zhu | Michael Zeng
Findings of the Association for Computational Linguistics: EMNLP 2023

While large models such as GPT-3 demonstrate exceptional performance in zeroshot and fewshot summarization tasks, their extensive serving and fine-tuning costs hinder their utilization in various applications. Conversely, previous studies have found that although automatic metrics tend to favor smaller fine-tuned models, the quality of the summaries they generate is inferior to that of larger models like GPT-3 when assessed by human evaluators. To address this issue, we propose InheritSumm, a versatile and compact summarization model derived from GPT-3.5 through distillation. InheritSumm not only exhibits comparable zeroshot and fewshot summarization capabilities to GPT-3.5 but is also sufficiently compact for fine-tuning purposes. Experimental results demonstrate that InheritSumm achieves similar or superior performance to GPT-3.5 in zeroshot and fewshot settings. Furthermore, it outperforms the previously established best small models in both prefix-tuning and full-data fine-tuning scenarios.

pdf bib
LMGQS: A Large-scale Dataset for Query-focused Summarization
Ruochen Xu | Song Wang | Yang Liu | Shuohang Wang | Yichong Xu | Dan Iter | Pengcheng He | Chenguang Zhu | Michael Zeng
Findings of the Association for Computational Linguistics: EMNLP 2023

Query-focused summarization (QFS) aims to extract or generate a summary of an input document that directly answers or is relevant to a given query. The lack of large-scale datasets in the form of documents, queries, and summaries has hindered model development in this area. In contrast, multiple large-scale high-quality datasets for generic summarization exist. We hypothesize that there is a hidden query for each summary sentence in a generic summarization annotation, and we utilize a large-scale pretrained language model to recover it. In this way, we convert four generic summarization benchmarks into a new QFS benchmark dataset, LMGQS, which consists of over 1 million document-query-summary samples. We thoroughly investigate the properties of our proposed dataset and establish baselines with state-of-the-art summarization models. By fine-tuning a language model on LMGQS, we achieve state-of-the-art zero-shot and supervised performance on multiple existing QFS benchmarks, demonstrating the high quality and diversity of LMGQS.

pdf bib
Automatic Prompt Optimization with “Gradient Descent” and Beam Search
Reid Pryzant | Dan Iter | Jerry Li | Yin Lee | Chenguang Zhu | Michael Zeng
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Large Language Models (LLMs) have shown impressive performance as general purpose agents, but their abilities remain highly dependent on prompts which are hand written with onerous trial-and-error effort. We propose a simple and nonparametric solution to this problem, Prompt Optimization with Textual Gradients (ProTeGi), which is inspired by numerical gradient descent to automatically improve prompts, assuming access to training data and an LLM API. The algorithm uses minibatches of data to form natural language “gradients” that criticize the current prompt, much like how numerical gradients point in the direction of error ascent. The natural language gradients are then “propagated” into the prompt by editing the prompt in the opposite semantic direction of the gradient. These gradient descent steps are guided by a beam search and bandit selection procedure which significantly improves algorithmic efficiency. Preliminary results across three benchmark NLP tasks and the novel problem of LLM jailbreak detection suggest that Automatic Prompt Optimization can outperform prior prompt editing techniques and improve an initial prompt’s performance by up to 31%, by using data to rewrite vague task descriptions into more precise annotation instructions.

pdf bib
MACSum: Controllable Summarization with Mixed Attributes
Yusen Zhang | Yang Liu | Ziyi Yang | Yuwei Fang | Yulong Chen | Dragomir Radev | Chenguang Zhu | Michael Zeng | Rui Zhang
Transactions of the Association for Computational Linguistics, Volume 11

Controllable summarization allows users to generate customized summaries with specified attributes. However, due to the lack of designated annotations of controlled summaries, existing work has to craft pseudo datasets by adapting generic summarization benchmarks. Furthermore, most research focuses on controlling single attributes individually (e.g., a short summary or a highly abstractive summary) rather than controlling a mix of attributes together (e.g., a short and highly abstractive summary). In this paper, we propose MACSum, the first human-annotated summarization dataset for controlling mixed attributes. It contains source texts from two domains, news articles and dialogues, with human-annotated summaries controlled by five designed attributes (Length, Extractiveness, Specificity, Topic, and Speaker). We propose two simple and effective parameter-efficient approaches for the new task of mixed controllable summarization based on hard prompt tuning and soft prefix tuning. Results and analysis demonstrate that hard prompt models yield the best performance on most metrics and human evaluations. However, mixed-attribute control is still challenging for summarization tasks. Our dataset and code are available at https://github.com/psunlpgroup/MACSum.

2022

pdf bib
Training Data is More Valuable than You Think: A Simple and Effective Method by Retrieving from Training Data
Shuohang Wang | Yichong Xu | Yuwei Fang | Yang Liu | Siqi Sun | Ruochen Xu | Chenguang Zhu | Michael Zeng
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Retrieval-based methods have been shown to be effective in NLP tasks via introducing external knowledge. However, the indexing and retrieving of large-scale corpora bring considerable computational cost. Surprisingly, we found that REtrieving from the traINing datA (REINA) only can lead to significant gains on multiple NLG and NLU tasks. We retrieve the labeled training instances most similar to the input text and then concatenate them with the input to feed into the model to generate the output. Experimental results show that this simple method can achieve significantly better performance on a variety of NLU and NLG tasks, including summarization, machine translation, language modeling, and question answering tasks. For instance, our proposed method achieved state-of-the-art results on XSum, BigPatent, and CommonsenseQA. Our code is released, https://github.com/microsoft/REINA .

pdf bib
KG-FiD: Infusing Knowledge Graph in Fusion-in-Decoder for Open-Domain Question Answering
Donghan Yu | Chenguang Zhu | Yuwei Fang | Wenhao Yu | Shuohang Wang | Yichong Xu | Xiang Ren | Yiming Yang | Michael Zeng
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Current Open-Domain Question Answering (ODQA) models typically include a retrieving module and a reading module, where the retriever selects potentially relevant passages from open-source documents for a given question, and the reader produces an answer based on the retrieved passages. The recently proposed Fusion-in-Decoder (FiD) framework is a representative example, which is built on top of a dense passage retriever and a generative reader, achieving the state-of-the-art performance. In this paper we further improve the FiD approach by introducing a knowledge-enhanced version, namely KG-FiD. Our new model uses a knowledge graph to establish the structural relationship among the retrieved passages, and a graph neural network (GNN) to re-rank the passages and select only a top few for further processing. Our experiments on common ODQA benchmark datasets (Natural Questions and TriviaQA) demonstrate that KG-FiD can achieve comparable or better performance in answer prediction than FiD, with less than 40% of the computation cost.

pdf bib
ParaTag: A Dataset of Paraphrase Tagging for Fine-Grained Labels, NLG Evaluation, and Data Augmentation
Shuohang Wang | Ruochen Xu | Yang Liu | Chenguang Zhu | Michael Zeng
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Paraphrase identification has been formulated as a binary classification task to decide whether two sentences hold a paraphrase relationship. Existing paraphrase datasets only annotate a binary label for each sentence pair. However, after a systematical analysis of existing paraphrase datasets, we found that the degree of paraphrase cannot be well characterized by a single binary label. And the criteria of paraphrase are not even consistent within the same dataset. We hypothesize that such issues would limit the effectiveness of paraphrase models trained on these data. To this end, we propose a novel fine-grained paraphrase annotation schema that labels the minimum spans of tokens in a sentence that don’t have the corresponding paraphrases in the other sentence. Under this setting, we frame paraphrasing as a sequence tagging task. We collect 30k sentence pairs in English with the new annotation schema, resulting in the ParaTag dataset. In addition to reporting baseline results on ParaTag using state-of-art language models, we show that ParaTag is especially useful for training an automatic scorer for language generation evaluation. Finally, we train a paraphrase generation model from ParaTag and achieve better data augmentation performance on the GLUE benchmark than other public paraphrasing datasets.

pdf bib
End-to-End Segmentation-based News Summarization
Yang Liu | Chenguang Zhu | Michael Zeng
Findings of the Association for Computational Linguistics: ACL 2022

In this paper, we bring a new way of digesting news content by introducing the task of segmenting a news article into multiple sections and generating the corresponding summary to each section. We make two contributions towards this new task. First, we create and make available a dataset, SegNews, consisting of 27k news articles with sections and aligned heading-style section summaries. Second, we propose a novel segmentation-based language generation model adapted from pre-trained language models that can jointly segment a document and produce the summary for each section. Experimental results on SegNews demonstrate that our model can outperform several state-of-the-art sequence-to-sequence generation models for this new task.

pdf bib
Dict-BERT: Enhancing Language Model Pre-training with Dictionary
Wenhao Yu | Chenguang Zhu | Yuwei Fang | Donghan Yu | Shuohang Wang | Yichong Xu | Michael Zeng | Meng Jiang
Findings of the Association for Computational Linguistics: ACL 2022

Pre-trained language models (PLMs) aim to learn universal language representations by conducting self-supervised training tasks on large-scale corpora. Since PLMs capture word semantics in different contexts, the quality of word representations highly depends on word frequency, which usually follows a heavy-tailed distributions in the pre-training corpus. Therefore, the embeddings of rare words on the tail are usually poorly optimized. In this work, we focus on enhancing language model pre-training by leveraging definitions of the rare words in dictionaries (e.g., Wiktionary). To incorporate a rare word definition as a part of input, we fetch its definition from the dictionary and append it to the end of the input text sequence. In addition to training with the masked language modeling objective, we propose two novel self-supervised pre-training tasks on word and sentence-level alignment between input text sequence and rare word definitions to enhance language modeling representation with dictionary. We evaluate the proposed Dict-BERT model on the language understanding benchmark GLUE and eight specialized domain benchmark datasets. Extensive experiments demonstrate that Dict-BERT can significantly improve the understanding of rare words and boost model performance on various NLP downstream tasks.

pdf bib
Leveraging Knowledge in Multilingual Commonsense Reasoning
Yuwei Fang | Shuohang Wang | Yichong Xu | Ruochen Xu | Siqi Sun | Chenguang Zhu | Michael Zeng
Findings of the Association for Computational Linguistics: ACL 2022

Commonsense reasoning (CSR) requires models to be equipped with general world knowledge. While CSR is a language-agnostic process, most comprehensive knowledge sources are restricted to a small number of languages, especially English. Thus, it remains unclear how to effectively conduct multilingual commonsense reasoning (XCSR) for various languages. In this work, we propose to use English as a pivot language, utilizing English knowledge sources for our our commonsense reasoning framework via a translate-retrieve-translate (TRT) strategy. For multilingual commonsense questions and answer candidates, we collect related knowledge via translation and retrieval from the knowledge in the source language. The retrieved knowledge is then translated into the target language and integrated into a pre-trained multilingual language model via visible knowledge attention. Then we utilize a diverse of four English knowledge sources to provide more comprehensive coverage of knowledge in different formats. Extensive results on the XCSR benchmark demonstrate that TRT with external knowledge can significantly improve multilingual commonsense reasoning in both zero-shot and translate-train settings, consistently outperforming the state-of-the-art by more than 3% on the multilingual commonsense reasoning benchmark X-CSQA and X-CODAH.

pdf bib
Automatic Rule Induction for Efficient Semi-Supervised Learning
Reid Pryzant | Ziyi Yang | Yichong Xu | Chenguang Zhu | Michael Zeng
Findings of the Association for Computational Linguistics: EMNLP 2022

Semi-supervised learning has shown promise in allowing NLP models to generalize from small amounts of labeled data. Meanwhile, pretrained transformer models act as black-box correlation engines that are difficult to explain and sometimes behave unreliably. In this paper, we propose tackling both of these challenges via Automatic Rule Induction (ARI), a simple and general-purpose framework for the automatic discovery and integration of symbolic rules into pretrained transformer models. First, we extract weak symbolic rules from low-capacity machine learning models trained on small amounts of labeled data. Next, we use an attention mechanism to integrate these rules into high-capacity pretrained transformer models. Last, the rule-augmented system becomes part of a self-training framework to boost supervision signal on unlabeled data. These steps can be layered beneath a variety of existing weak supervision and semi-supervised NLP algorithms in order to improve performance and interpretability. Experiments across nine sequence classification and relation extraction tasks suggest that ARI can improve state-of-the-art methods with no manual effort and minimal computational overhead.

pdf bib
Narrate Dialogues for Better Summarization
Ruochen Xu | Chenguang Zhu | Michael Zeng
Findings of the Association for Computational Linguistics: EMNLP 2022

Dialogue summarization models aim to generate a concise and accurate summary for multi-party dialogue. The complexity of dialogue, including coreference, dialogue acts, and inter-speaker interactions bring unique challenges to dialogue summarization. Most recent neural models achieve state-of-art performance following the pretrain-then-finetune recipe, where the large-scale language model (LLM) is pretrained on large-scale single-speaker written text, but later finetuned on multi-speaker dialogue text. To mitigate the gap between pretraining and finetuning, we propose several approaches to convert the dialogue into a third-person narrative style and show that the narration serves as a valuable annotation for LLMs. Empirical results on three benchmark datasets show our simple approach achieves higher scores on the ROUGE and a factual correctness metric.

pdf bib
Unsupervised Multi-Granularity Summarization
Ming Zhong | Yang Liu | Suyu Ge | Yuning Mao | Yizhu Jiao | Xingxing Zhang | Yichong Xu | Chenguang Zhu | Michael Zeng | Jiawei Han
Findings of the Association for Computational Linguistics: EMNLP 2022

Text summarization is a user-preference based task, i.e., for one document, users often have different priorities for the summary. As a key aspect of customization in summarization, granularity is used to measure the semantic coverage between the summary and source document. However, developing systems that can generate summaries with customizable semantic coverage is still an under-explored topic. In this paper, we propose the first unsupervised multi-granularity summarization framework, GranuSum. We take events as the basic semantic units of the source documents and propose to rank these events by their salience. We also develop a model to summarize input documents with given events as anchors and hints. By inputting different numbers of events, GranuSum is capable of producing multi-granular summaries in an unsupervised manner. Meanwhile, we annotate a new benchmark GranuDUC that contains multiple summaries at different granularities for each document cluster. Experimental results confirm the substantial superiority of GranuSum on multi-granularity summarization over strong baselines. Furthermore, by exploiting the event information, GranuSum also exhibits state-of-the-art performance under the conventional unsupervised abstractive setting.

pdf bib
Task Compass: Scaling Multi-task Pre-training with Task Prefix
Zhuosheng Zhang | Shuohang Wang | Yichong Xu | Yuwei Fang | Wenhao Yu | Yang Liu | Hai Zhao | Chenguang Zhu | Michael Zeng
Findings of the Association for Computational Linguistics: EMNLP 2022

Leveraging task-aware annotated data as supervised signals to assist with self-supervised learning on large-scale unlabeled data has become a new trend in pre-training language models. Existing studies show that multi-task learning with large-scale supervised tasks suffers from negative effects across tasks. To tackle the challenge, we propose a task prefix guided multi-task pre-training framework to explore the relationships among tasks. We conduct extensive experiments on 40 datasets, which show that our model can not only serve as the strong foundation backbone for a wide range of tasks but also be feasible as a probing tool for analyzing task relationships. The task relationships reflected by the prefixes align transfer learning performance between tasks. They also suggest directions for data augmentation with complementary tasks, which help our model achieve human-parity results on commonsense reasoning leaderboards. Code is available at https://github.com/cooelf/CompassMTL.

pdf bib
AdaPrompt: Adaptive Model Training for Prompt-based NLP
Yulong Chen | Yang Liu | Li Dong | Shuohang Wang | Chenguang Zhu | Michael Zeng | Yue Zhang
Findings of the Association for Computational Linguistics: EMNLP 2022

Prompt-based learning, with its capability to tackle zero-shot and few-shot NLP tasks, has gained much attention in the community.The main idea is to bridge the gap between NLP downstream tasks and language modeling (LM), by mapping these tasks into natural language prompts, which are then filled by pre-trained language models (PLMs).However, for prompt learning, there are still two salient gaps between NLP tasks and pretraining.First, prompt information is not necessarily sufficiently present during LM pre-training. Second, task-specific data are not necessarily well represented during pre-training. We address these two issues by proposing AdaPrompt, adaptively retrieving external data for continual pretraining of PLMs by making use of both task and prompt characteristics. In addition, we make use of knowledge in Natural Language Inference models for deriving adaptive verbalizers.Experimental results on five NLP benchmarks show that AdaPrompt can improve over standard PLMs in few-shot settings. In addition, in zero-shot settings, our method outperforms standard prompt-based methods by up to 26.35% relative error reduction.

2021

pdf bib
Enhancing Factual Consistency of Abstractive Summarization
Chenguang Zhu | William Hinthorn | Ruochen Xu | Qingkai Zeng | Michael Zeng | Xuedong Huang | Meng Jiang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Automatic abstractive summaries are found to often distort or fabricate facts in the article. This inconsistency between summary and original text has seriously impacted its applicability. We propose a fact-aware summarization model FASum to extract and integrate factual relations into the summary generation process via graph attention. We then design a factual corrector model FC to automatically correct factual errors from summaries generated by existing systems. Empirical results show that the fact-aware summarization can produce abstractive summaries with higher factual consistency compared with existing systems, and the correction model improves the factual consistency of given summaries via modifying only a few keywords.

pdf bib
SPLAT: Speech-Language Joint Pre-Training for Spoken Language Understanding
Yu-An Chung | Chenguang Zhu | Michael Zeng
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Spoken language understanding (SLU) requires a model to analyze input acoustic signal to understand its linguistic content and make predictions. To boost the models’ performance, various pre-training methods have been proposed to learn rich representations from large-scale unannotated speech and text. However, the inherent disparities between the two modalities necessitate a mutual analysis. In this paper, we propose a novel semi-supervised learning framework, SPLAT, to jointly pre-train the speech and language modules. Besides conducting a self-supervised masked language modeling task on the two individual modules using unpaired speech and text, SPLAT aligns representations from the two modules in a shared latent space using a small amount of paired speech and text. Thus, during fine-tuning, the speech module alone can produce representations carrying both acoustic information and contextual semantic knowledge of an input acoustic signal. Experimental results verify the effectiveness of our approach on various SLU tasks. For example, SPLAT improves the previous state-of-the-art performance on the Spoken SQuAD dataset by more than 10%.

pdf bib
MediaSum: A Large-scale Media Interview Dataset for Dialogue Summarization
Chenguang Zhu | Yang Liu | Jie Mei | Michael Zeng
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

This paper introduces MediaSum, a large-scale media interview dataset consisting of 463.6K transcripts with abstractive summaries. To create this dataset, we collect interview transcripts from NPR and CNN and employ the overview and topic descriptions as summaries. Compared with existing public corpora for dialogue summarization, our dataset is an order of magnitude larger and contains complex multi-party conversations from multiple domains. We conduct statistical analysis to demonstrate the unique positional bias exhibited in the transcripts of televised and radioed interviews. We also show that MediaSum can be used in transfer learning to improve a model’s performance on other dialogue summarization tasks.

pdf bib
Modeling Entity Knowledge for Fact Verification
Yang Liu | Chenguang Zhu | Michael Zeng
Proceedings of the Fourth Workshop on Fact Extraction and VERification (FEVER)

Fact verification is a challenging task of identifying the truthfulness of given claims based on the retrieval of relevant evidence texts. Many claims require understanding and reasoning over external entity information for precise verification. In this paper, we propose a novel fact verification model using entity knowledge to enhance its performance. We retrieve descriptive text from Wikipedia for each entity, and then encode these descriptions by a smaller lightweight network to be fed into the main verification model. Furthermore, we boost model performance by adopting and predicting the relatedness between the claim and each evidence as additional signals. We demonstrate experimentally on a large-scale benchmark dataset FEVER that our framework achieves competitive results with a FEVER score of 72.89% on the test set.

pdf bib
Fusing Context Into Knowledge Graph for Commonsense Question Answering
Yichong Xu | Chenguang Zhu | Ruochen Xu | Yang Liu | Michael Zeng | Xuedong Huang
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Retrieval Enhanced Model for Commonsense Generation
Han Wang | Yang Liu | Chenguang Zhu | Linjun Shou | Ming Gong | Yichong Xu | Michael Zeng
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Want To Reduce Labeling Cost? GPT-3 Can Help
Shuohang Wang | Yang Liu | Yichong Xu | Chenguang Zhu | Michael Zeng
Findings of the Association for Computational Linguistics: EMNLP 2021

Data annotation is a time-consuming and labor-intensive process for many NLP tasks. Although there exist various methods to produce pseudo data labels, they are often task-specific and require a decent amount of labeled data to start with. Recently, the immense language model GPT-3 with 170 billion parameters has achieved tremendous improvement across many few-shot learning tasks. In this paper, we explore ways to leverage GPT-3 as a low-cost data labeler to train other models. We find that to make the downstream model achieve the same performance on a variety of NLU and NLG tasks, it costs 50% to 96% less to use labels from GPT-3 than using labels from humans. Furthermore, we propose a novel framework of combining pseudo labels from GPT-3 with human labels, which leads to even better performance. These results present a cost-effective data labeling methodology that is generalizable to many practical applications.

2020

pdf bib
Mixed-Lingual Pre-training for Cross-lingual Summarization
Ruochen Xu | Chenguang Zhu | Yu Shi | Michael Zeng | Xuedong Huang
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing

Cross-lingual Summarization (CLS) aims at producing a summary in the target language for an article in the source language. Traditional solutions employ a two-step approach, i.e. translate -> summarize or summarize -> translate. Recently, end-to-end models have achieved better results, but these approaches are mostly limited by their dependence on large-scale labeled data. We propose a solution based on mixed-lingual pre-training that leverages both cross-lingual tasks such as translation and monolingual tasks like masked language models. Thus, our model can leverage the massive monolingual data to enhance its modeling of language. Moreover, the architecture has no task-specific components, which saves memory and increases optimization efficiency. We show in experiments that this pre-training scheme can effectively boost the performance of cross-lingual summarization. In NCLS dataset, our model achieves an improvement of 2.82 (English to Chinese) and 1.15 (Chinese to English) ROUGE-1 scores over state-of-the-art results.

pdf bib
Few-shot Natural Language Generation for Task-Oriented Dialog
Baolin Peng | Chenguang Zhu | Chunyuan Li | Xiujun Li | Jinchao Li | Michael Zeng | Jianfeng Gao
Findings of the Association for Computational Linguistics: EMNLP 2020

As a crucial component in task-oriented dialog systems, the Natural Language Generation (NLG) module converts a dialog act represented in a semantic form into a response in natural language. The success of traditional template-based or statistical models typically relies on heavily annotated data, which is infeasible for new domains. Therefore, it is pivotal for an NLG system to generalize well with limited labelled data in real applications. To this end, we present FewshotWOZ, the first NLG benchmark to simulate the few-shot learning setting in task-oriented dialog systems. Further, we develop the SC-GPT model. It is pre-trained on a large set of annotated NLG corpus to acquire the controllable generation ability, and fine-tuned with only a few domain-specific labels to adapt to new domains. Experiments on FewshotWOZ and the large Multi-Domain-WOZ datasets show that the proposed SC-GPT significantly outperforms existing methods, measured by various automatic metrics and human evaluations.

pdf bib
A Hierarchical Network for Abstractive Meeting Summarization with Cross-Domain Pretraining
Chenguang Zhu | Ruochen Xu | Michael Zeng | Xuedong Huang
Findings of the Association for Computational Linguistics: EMNLP 2020

With the abundance of automatic meeting transcripts, meeting summarization is of great interest to both participants and other parties. Traditional methods of summarizing meetings depend on complex multi-step pipelines that make joint optimization intractable. Meanwhile, there are a handful of deep neural models for text summarization and dialogue systems. However, the semantic structure and styles of meeting transcripts are quite different from articles and conversations. In this paper, we propose a novel abstractive summary network that adapts to the meeting scenario. We design a hierarchical structure to accommodate long meeting transcripts and a role vector to depict the difference among speakers. Furthermore, due to the inadequacy of meeting summary data, we pretrain the model on large-scale news summary data. Empirical results show that our model outperforms previous approaches in both automatic metrics and human evaluation. For example, on ICSI dataset, the ROUGE-1 score increases from 34.66% to 46.28%.

pdf bib
TED: A Pretrained Unsupervised Summarization Model with Theme Modeling and Denoising
Ziyi Yang | Chenguang Zhu | Robert Gmyr | Michael Zeng | Xuedong Huang | Eric Darve
Findings of the Association for Computational Linguistics: EMNLP 2020

Text summarization aims to extract essential information from a piece of text and transform the text into a concise version. Existing unsupervised abstractive summarization models leverage recurrent neural networks framework while the recently proposed transformer exhibits much more capability. Moreover, most of previous summarization models ignore abundant unlabeled corpora resources available for pretraining. In order to address these issues, we propose TED, a transformer-based unsupervised abstractive summarization system with pretraining on large-scale data. We first leverage the lead bias in news articles to pretrain the model on millions of unlabeled corpora. Next, we finetune TED on target domains through theme modeling and a denoising autoencoder to enhance the quality of generated summaries. Notably, TED outperforms all unsupervised abstractive baselines on NYT, CNN/DM and English Gigaword datasets with various document styles. Further analysis shows that the summaries generated by TED are highly abstractive, and each component in the objective function of TED is highly effective.

2019

pdf bib
Multi-task Learning for Natural Language Generation in Task-Oriented Dialogue
Chenguang Zhu | Michael Zeng | Xuedong Huang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

In task-oriented dialogues, Natural Language Generation (NLG) is the final yet crucial step to produce user-facing system utterances. The result of NLG is directly related to the perceived quality and usability of a dialogue system. While most existing systems provide semantically correct responses given goals to present, they struggle to match the variation and fluency in the human language. In this paper, we propose a novel multi-task learning framework, NLG-LM, for natural language generation. In addition to generating high-quality responses conveying the required information, it also explicitly targets for naturalness in generated responses via an unconditioned language model. This can significantly improve the learning of style and variation in human language. Empirical results show that this multi-task learning framework outperforms previous models across multiple datasets. For example, it improves the previous best BLEU score on the E2E-NLG dataset by 2.2%, and on the Laptop dataset by 6.1%.

pdf bib
SIM: A Slot-Independent Neural Model for Dialogue State Tracking
Chenguang Zhu | Michael Zeng | Xuedong Huang
Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue

Dialogue state tracking is an important component in task-oriented dialogue systems to identify users’ goals and requests as a dialogue proceeds. However, as most previous models are dependent on dialogue slots, the model complexity soars when the number of slots increases. In this paper, we put forward a slot-independent neural model (SIM) to track dialogue states while keeping the model complexity invariant to the number of dialogue slots. The model utilizes attention mechanisms between user utterance and system actions. SIM achieves state-of-the-art results on WoZ and DSTC2 tasks, with only 20% of the model size of previous models.