Shuming Ma


2023

pdf bib
Discourse-Centric Evaluation of Document-level Machine Translation with a New Densely Annotated Parallel Corpus of Novels
Yuchen Eleanor Jiang | Tianyu Liu | Shuming Ma | Dongdong Zhang | Mrinmaya Sachan | Ryan Cotterell
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Several recent papers claim to have achieved human parity at sentence-level machine translation (MT)—especially between high-resource language pairs. In response, the MT community has, in part, shifted its focus to document-level translation. Translating documents requires a deeper understanding of the structure and meaning of text, which is often captured by various kinds of discourse phenomena such as consistency, coherence, and cohesion. However, this renders conventional sentence-level MT evaluation benchmarks inadequate for evaluating the performance of context-aware MT systems. This paperpresents a new dataset with rich discourse annotations, built upon the large-scale parallel corpus BWB introduced in Jiang et al. (2022a). The new BWB annotation introduces four extra evaluation aspects, i.e., entity, terminology, coreference, and quotation, covering 15,095 entity mentions in both languages. Using these annotations, we systematically investigate the similarities and differences between the discourse structures of source and target languages, and the challenges they pose to MT. We discover that MT outputs differ fundamentally from human translations in terms of their latent discourse structures. This gives us a new perspective on the challenges and opportunities in document-level MT. We make our resource publicly available to spur future research in document-level MT and its generalization to other language translation tasks.

pdf bib
GanLM: Encoder-Decoder Pre-training with an Auxiliary Discriminator
Jian Yang | Shuming Ma | Li Dong | Shaohan Huang | Haoyang Huang | Yuwei Yin | Dongdong Zhang | Liqun Yang | Furu Wei | Zhoujun Li
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Pre-trained models have achieved remarkable success in natural language processing (NLP). However, existing pre-training methods underutilize the benefits of language understanding for generation. Inspired by the idea of Generative Adversarial Networks (GANs), we propose a GAN-style model for encoder-decoder pre-training by introducing an auxiliary discriminator, unifying the ability of language understanding and generation in a single model. Our model, named as GanLM, is trained with two pre-training objectives: replaced token detection and replaced token denoising. Specifically, given masked source sentences, the generator outputs the target distribution and the discriminator predicts whether the target sampled tokens from distribution are incorrect. The target sentence is replaced with misclassified tokens to construct noisy previous context, which is used to generate the gold sentence. In general, both tasks improve the ability of language understanding and generation by selectively using the denoising data. Extensive experiments in language generation benchmarks show that GanLM with the powerful language understanding capability outperforms various strong pre-trained language models (PLMs) and achieves state-of-the-art performance.

pdf bib
A Length-Extrapolatable Transformer
Yutao Sun | Li Dong | Barun Patra | Shuming Ma | Shaohan Huang | Alon Benhaim | Vishrav Chaudhary | Xia Song | Furu Wei
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Position modeling plays a critical role in Transformers. In this paper, we focus on length extrapolation, i.e., training on short texts while evaluating longer sequences. We define attention resolution as an indicator of extrapolation. Then we propose two designs to improve the above metric of Transformers. Specifically, we introduce a relative position embedding to explicitly maximize attention resolution. Moreover, we use blockwise causal attention during inference for better resolution. We evaluate different Transformer variants with language modeling. Experimental results show that our model achieves strong performance in both interpolation and extrapolation settings. The code will be available at https://aka.ms/LeX-Transformer.

pdf bib
Why Can GPT Learn In-Context? Language Models Secretly Perform Gradient Descent as Meta-Optimizers
Damai Dai | Yutao Sun | Li Dong | Yaru Hao | Shuming Ma | Zhifang Sui | Furu Wei
Findings of the Association for Computational Linguistics: ACL 2023

Large pretrained language models have shown surprising in-context learning (ICL) ability. With a few demonstration input-label pairs, they can predict the label for an unseen input without parameter updates. Despite the great success in performance, its working mechanism still remains an open question. In this paper, we explain language models as meta-optimizers and understand in-context learning as implicit finetuning. Theoretically, we figure out that Transformer attention has a dual form of gradient descent. On top of it, we understand ICL as follows: GPT first produces meta-gradients according to the demonstration examples, and then these meta-gradients are applied to the original GPT to build an ICL model. We comprehensively compare the behaviors of in-context learning and explicit finetuning on real tasks to provide empirical evidence that supports our understanding. Experimental results show that in-context learning behaves similarly to explicit finetuning from multiple perspectives. Inspired by the dual form between Transformer attention and gradient descent, we design a momentum-based attention by analogy with gradient descent with momentum. The improved performance over vanilla attention further supports our understanding from another perspective, and more importantly, shows the potential to utilize our understanding for future model design. The code is available at https://aka.ms/icl.

pdf bib
On the Off-Target Problem of Zero-Shot Multilingual Neural Machine Translation
Liang Chen | Shuming Ma | Dongdong Zhang | Furu Wei | Baobao Chang
Findings of the Association for Computational Linguistics: ACL 2023

While multilingual neural machine translation has achieved great success, it suffers from the off-target issue, where the translation is in the wrong language. This problem is more pronounced on zero-shot translation tasks. In this work, we find that failing in encoding discriminative target language signal will lead to off-target and a closer lexical distance (i.e., KL-divergence) between two languages’ vocabularies is related with a higher off-target rate. We also find that solely isolating the vocab of different languages in the decoder can alleviate the problem. Motivated by the findings, we propose Language Aware Vocabulary Sharing (LAVS), a simple and effective algorithm to construct the multilingual vocabulary, that greatly alleviates the off-target problem of the translation model by increasing the KL-divergence between languages. We conduct experiments on a multilingual machine translation benchmark in 11 languages. Experiments show that the off-target rate for 90 translation tasks is reduced from 29% to 8%, while the overall BLEU score is improved by an average of 1.9 points without extra training cost or sacrificing the supervised directions’ performance. We release the code at https://github.com/PKUnlp-icler/Off-Target-MNMT for reproduction.

pdf bib
TRIP: Accelerating Document-level Multilingual Pre-training via Triangular Document-level Pre-training on Parallel Data Triplets
Hongyuan Lu | Haoyang Huang | Shuming Ma | Dongdong Zhang | Wai Lam | Zhaochuan Gao | Anthony Aue | Arul Menezes | Furu Wei
Findings of the Association for Computational Linguistics: EMNLP 2023

Despite the success of multilingual sequence-to-sequence pre-training, most existing approaches rely on document-level monolingual corpora in many different languages, sentence-level bilingual corpora, and sometimes synthetic document-level bilingual corpora. This hampers the performance with cross-lingual document-level tasks such as document-level translation. Hence, we propose to mine and leverage document-level trilingual parallel corpora to improve sequence-to-sequence multilingual pre-training. We present Triangular Document-level Pre-training (TRIP) as the first in the field to accelerate the conventional monolingual and bilingual objectives into a trilingual objective with a novel method called Grafting. Experiments show that TRIP achieves several strong state-of-the-art (SOTA) scores on three multilingual document-level machine translation benchmarks and one cross-lingual abstractive summarization benchmark, including consistent improvements by up to 3.11 d-BLEU points and 8.9 ROUGE-L points.

2022

pdf bib
Towards Making the Most of Cross-Lingual Transfer for Zero-Shot Neural Machine Translation
Guanhua Chen | Shuming Ma | Yun Chen | Dongdong Zhang | Jia Pan | Wenping Wang | Furu Wei
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

This paper demonstrates that multilingual pretraining and multilingual fine-tuning are both critical for facilitating cross-lingual transfer in zero-shot translation, where the neural machine translation (NMT) model is tested on source languages unseen during supervised training. Following this idea, we present SixT+, a strong many-to-English NMT model that supports 100 source languages but is trained with a parallel dataset in only six source languages. SixT+ initializes the decoder embedding and the full encoder with XLM-R large and then trains the encoder and decoder layers with a simple two-stage training strategy. SixT+ achieves impressive performance on many-to-English translation. It significantly outperforms CRISS and m2m-100, two strong multilingual NMT systems, with an average gain of 7.2 and 5.0 BLEU respectively. Additionally, SixT+ offers a set of model parameters that can be further fine-tuned to other unsupervised tasks. We demonstrate that adding SixT+ initialization outperforms state-of-the-art explicitly designed unsupervised NMT models on Si<->En and Ne<->En by over 1.2 average BLEU. When applied to zero-shot cross-lingual abstractive summarization, it produces an average performance gain of 12.3 ROUGE-L over mBART-ft. We conduct detailed analyses to understand the key ingredients of SixT+, including multilinguality of the auxiliary parallel data, positional disentangled encoder, and the cross-lingual transferability of its encoder.

pdf bib
XLM-E: Cross-lingual Language Model Pre-training via ELECTRA
Zewen Chi | Shaohan Huang | Li Dong | Shuming Ma | Bo Zheng | Saksham Singhal | Payal Bajaj | Xia Song | Xian-Ling Mao | Heyan Huang | Furu Wei
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In this paper, we introduce ELECTRA-style tasks to cross-lingual language model pre-training. Specifically, we present two pre-training tasks, namely multilingual replaced token detection, and translation replaced token detection. Besides, we pretrain the model, named as XLM-E, on both multilingual and parallel corpora. Our model outperforms the baseline models on various cross-lingual understanding tasks with much less computation cost. Moreover, analysis shows that XLM-E tends to obtain better cross-lingual transferability.

pdf bib
StableMoE: Stable Routing Strategy for Mixture of Experts
Damai Dai | Li Dong | Shuming Ma | Bo Zheng | Zhifang Sui | Baobao Chang | Furu Wei
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The Mixture-of-Experts (MoE) technique can scale up the model size of Transformers with an affordable computational overhead. We point out that existing learning-to-route MoE methods suffer from the routing fluctuation issue, i.e., the target expert of the same input may change along with training, but only one expert will be activated for the input during inference. The routing fluctuation tends to harm sample efficiency because the same input updates different experts but only one is finally used. In this paper, we propose StableMoE with two training stages to address the routing fluctuation problem. In the first training stage, we learn a balanced and cohesive routing strategy and distill it into a lightweight router decoupled from the backbone model. In the second training stage, we utilize the distilled router to determine the token-to-expert assignment and freeze it for a stable routing strategy. We validate our method on language modeling and multilingual machine translation. The results show that StableMoE outperforms existing MoE methods in terms of both convergence speed and performance.

pdf bib
PAEG: Phrase-level Adversarial Example Generation for Neural Machine Translation
Juncheng Wan | Jian Yang | Shuming Ma | Dongdong Zhang | Weinan Zhang | Yong Yu | Zhoujun Li
Proceedings of the 29th International Conference on Computational Linguistics

While end-to-end neural machine translation (NMT) has achieved impressive progress, noisy input usually leads models to become fragile and unstable. Generating adversarial examples as the augmented data has been proved to be useful to alleviate this problem. Existing methods for adversarial example generation (AEG) are word-level or character-level, which ignore the ubiquitous phrase structure. In this paper, we propose a Phrase-level Adversarial Example Generation (PAEG) framework to enhance the robustness of the translation model. Our method further improves the gradient-based word-level AEG method by adopting a phrase-level substitution strategy. We verify our method on three benchmarks, including LDC Chinese-English, IWSLT14 German-English, and WMT14 English-German tasks. Experimental results demonstrate that our approach significantly improves translation performance and robustness to noise compared to previous strong baselines.

pdf bib
Zero-shot Cross-lingual Transfer of Prompt-based Tuning with a Unified Multilingual Prompt
Lianzhe Huang | Shuming Ma | Dongdong Zhang | Furu Wei | Houfeng Wang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Prompt-based tuning has been proven effective for pretrained language models (PLMs). While most of the existing work focuses on the monolingual prompts, we study the multilingual prompts for multilingual PLMs, especially in the zero-shot cross-lingual setting. To alleviate the effort of designing different prompts for multiple languages, we propose a novel model that uses a unified prompt for all languages, called UniPrompt. Different from the discrete prompts and soft prompts, the unified prompt is model-based and language-agnostic. Specifically, the unified prompt is initialized by a multilingual PLM to produce language-independent representation, after which is fused with the text input. During inference, the prompts can be pre-computed so that no extra computation cost is needed. To collocate with the unified prompt, we propose a new initialization method for the target label word to further improve the model’s transferability across languages. Extensive experiments show that our proposed methods can significantly outperform the strong baselines across different languages. We release data and code to facilitate future research.

pdf bib
CROP: Zero-shot Cross-lingual Named Entity Recognition with Multilingual Labeled Sequence Translation
Jian Yang | Shaohan Huang | Shuming Ma | Yuwei Yin | Li Dong | Dongdong Zhang | Hongcheng Guo | Zhoujun Li | Furu Wei
Findings of the Association for Computational Linguistics: EMNLP 2022

Named entity recognition (NER) suffers from the scarcity of annotated training data, especially for low-resource languages without labeled data. Cross-lingual NER has been proposed to alleviate this issue by transferring knowledge from high-resource languages to low-resource languages via aligned cross-lingual representations or machine translation results. However, the performance of cross-lingual NER methods is severely affected by the unsatisfactory quality of translation or label projection. To address these problems, we propose a Cross-lingual Entity Projection framework (CROP) to enable zero-shot cross-lingual NER with the help of a multilingual labeled sequence translation model. Specifically, the target sequence is first translated into the source language and then tagged by a source NER model. We further adopt a labeled sequence translation model to project the tagged sequence back to the target language and label the target raw sentence. Ultimately, the whole pipeline is integrated into an end-to-end model by the way of self-training. Experimental results on two benchmarks demonstrate that our method substantially outperforms the previous strong baseline by a large margin of +3 7 F1 scores and achieves state-of-the-art performance.

pdf bib
BlonDe: An Automatic Evaluation Metric for Document-level Machine Translation
Yuchen Jiang | Tianyu Liu | Shuming Ma | Dongdong Zhang | Jian Yang | Haoyang Huang | Rico Sennrich | Ryan Cotterell | Mrinmaya Sachan | Ming Zhou
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Standard automatic metrics, e.g. BLEU, are not reliable for document-level MT evaluation. They can neither distinguish document-level improvements in translation quality from sentence-level ones, nor identify the discourse phenomena that cause context-agnostic translations. This paper introduces a novel automatic metric BlonDe to widen the scope of automatic MT evaluation from sentence to document level. BlonDe takes discourse coherence into consideration by categorizing discourse-related spans and calculating the similarity-based F1 measure of categorized spans. We conduct extensive comparisons on a newly constructed dataset BWB. The experimental results show that BlonDe possesses better selectivity and interpretability at the document-level, and is more sensitive to document-level nuances. In a large-scale human study, BlonDe also achieves significantly higher Pearson’s r correlation with human judgments compared to previous metrics.

2021

pdf bib
Multilingual Agreement for Multilingual Neural Machine Translation
Jian Yang | Yuwei Yin | Shuming Ma | Haoyang Huang | Dongdong Zhang | Zhoujun Li | Furu Wei
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Although multilingual neural machine translation (MNMT) enables multiple language translations, the training process is based on independent multilingual objectives. Most multilingual models can not explicitly exploit different language pairs to assist each other, ignoring the relationships among them. In this work, we propose a novel agreement-based method to encourage multilingual agreement among different translation directions, which minimizes the differences among them. We combine the multilingual training objectives with the agreement term by randomly substituting some fragments of the source language with their counterpart translations of auxiliary languages. To examine the effectiveness of our method, we conduct experiments on the multilingual translation task of 10 language pairs. Experimental results show that our method achieves significant improvements over the previous multilingual baselines.

pdf bib
Zero-Shot Cross-Lingual Transfer of Neural Machine Translation with Multilingual Pretrained Encoders
Guanhua Chen | Shuming Ma | Yun Chen | Li Dong | Dongdong Zhang | Jia Pan | Wenping Wang | Furu Wei
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Previous work mainly focuses on improving cross-lingual transfer for NLU tasks with a multilingual pretrained encoder (MPE), or improving the performance on supervised machine translation with BERT. However, it is under-explored that whether the MPE can help to facilitate the cross-lingual transferability of NMT model. In this paper, we focus on a zero-shot cross-lingual transfer task in NMT. In this task, the NMT model is trained with parallel dataset of only one language pair and an off-the-shelf MPE, then it is directly tested on zero-shot language pairs. We propose SixT, a simple yet effective model for this task. SixT leverages the MPE with a two-stage training schedule and gets further improvement with a position disentangled encoder and a capacity-enhanced decoder. Using this method, SixT significantly outperforms mBART, a pretrained multilingual encoder-decoder model explicitly designed for NMT, with an average improvement of 7.1 BLEU on zero-shot any-to-English test sets across 14 source languages. Furthermore, with much less training computation cost and training data, our model achieves better performance on 15 any-to-English test sets than CRISS and m2m-100, two strong multilingual NMT baselines.

pdf bib
mT6: Multilingual Pretrained Text-to-Text Transformer with Translation Pairs
Zewen Chi | Li Dong | Shuming Ma | Shaohan Huang | Saksham Singhal | Xian-Ling Mao | Heyan Huang | Xia Song | Furu Wei
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Multilingual T5 pretrains a sequence-to-sequence model on massive monolingual texts, which has shown promising results on many cross-lingual tasks. In this paper, we improve multilingual text-to-text transfer Transformer with translation pairs (mT6). Specifically, we explore three cross-lingual text-to-text pre-training tasks, namely, machine translation, translation pair span corruption, and translation span corruption. In addition, we propose a partially non-autoregressive objective for text-to-text pre-training. We evaluate the methods on seven multilingual benchmark datasets, including sentence classification, named entity recognition, question answering, and abstractive summarization. Experimental results show that the proposed mT6 improves cross-lingual transferability over mT5.

pdf bib
How Does Distilled Data Complexity Impact the Quality and Confidence of Non-Autoregressive Machine Translation?
Weijia Xu | Shuming Ma | Dongdong Zhang | Marine Carpuat
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Improving Multilingual Neural Machine Translation with Auxiliary Source Languages
Weijia Xu | Yuwei Yin | Shuming Ma | Dongdong Zhang | Haoyang Huang
Findings of the Association for Computational Linguistics: EMNLP 2021

Multilingual neural machine translation models typically handle one source language at a time. However, prior work has shown that translating from multiple source languages improves translation quality. Different from existing approaches on multi-source translation that are limited to the test scenario where parallel source sentences from multiple languages are available at inference time, we propose to improve multilingual translation in a more common scenario by exploiting synthetic source sentences from auxiliary languages. We train our model on synthetic multi-source corpora and apply random masking to enable flexible inference with single-source or bi-source inputs. Extensive experiments on Chinese/English-Japanese and a large-scale multilingual translation benchmark show that our model outperforms the multilingual baseline significantly by up to +4.0 BLEU with the largest improvements on low-resource or distant language pairs.

pdf bib
Smart-Start Decoding for Neural Machine Translation
Jian Yang | Shuming Ma | Dongdong Zhang | Juncheng Wan | Zhoujun Li | Ming Zhou
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Most current neural machine translation models adopt a monotonic decoding order of either left-to-right or right-to-left. In this work, we propose a novel method that breaks up the limitation of these decoding orders, called Smart-Start decoding. More specifically, our method first predicts a median word. It starts to decode the words on the right side of the median word and then generates words on the left. We evaluate the proposed Smart-Start decoding method on three datasets. Experimental results show that the proposed method can significantly outperform strong baseline models.

pdf bib
Multilingual Machine Translation Systems from Microsoft for WMT21 Shared Task
Jian Yang | Shuming Ma | Haoyang Huang | Dongdong Zhang | Li Dong | Shaohan Huang | Alexandre Muzio | Saksham Singhal | Hany Hassan | Xia Song | Furu Wei
Proceedings of the Sixth Conference on Machine Translation

This report describes Microsoft’s machine translation systems for the WMT21 shared task on large-scale multilingual machine translation. We participated in all three evaluation tracks including Large Track and two Small Tracks where the former one is unconstrained and the latter two are fully constrained. Our model submissions to the shared task were initialized with DeltaLM, a generic pre-trained multilingual encoder-decoder model, and fine-tuned correspondingly with the vast collected parallel data and allowed data sources according to track settings, together with applying progressive learning and iterative back-translation approaches to further improve the performance. Our final submissions ranked first on three tracks in terms of the automatic evaluation metric.

2020

pdf bib
A Simple and Effective Unified Encoder for Document-Level Machine Translation
Shuming Ma | Dongdong Zhang | Ming Zhou
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Most of the existing models for document-level machine translation adopt dual-encoder structures. The representation of the source sentences and the document-level contexts are modeled with two separate encoders. Although these models can make use of the document-level contexts, they do not fully model the interaction between the contexts and the source sentences, and can not directly adapt to the recent pre-training models (e.g., BERT) which encodes multiple sentences with a single encoder. In this work, we propose a simple and effective unified encoder that can outperform the baseline models of dual-encoder models in terms of BLEU and METEOR scores. Moreover, the pre-training models can further boost the performance of our proposed model.

pdf bib
Improving Neural Machine Translation with Soft Template Prediction
Jian Yang | Shuming Ma | Dongdong Zhang | Zhoujun Li | Ming Zhou
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Although neural machine translation (NMT) has achieved significant progress in recent years, most previous NMT models only depend on the source text to generate translation. Inspired by the success of template-based and syntax-based approaches in other fields, we propose to use extracted templates from tree structures as soft target templates to guide the translation procedure. In order to learn the syntactic structure of the target sentences, we adopt constituency-based parse tree to generate candidate templates. We incorporate the template information into the encoder-decoder framework to jointly utilize the templates and source text. Experiments show that our model significantly outperforms the baseline models on four benchmarks and demonstrates the effectiveness of soft target templates.

2019

pdf bib
Group, Extract and Aggregate: Summarizing a Large Amount of Finance News for Forex Movement Prediction
Deli Chen | Shuming Ma | Keiko Harimoto | Ruihan Bao | Qi Su | Xu Sun
Proceedings of the Second Workshop on Economics and Natural Language Processing

Incorporating related text information has proven successful in stock market prediction. However, it is a huge challenge to utilize texts in the enormous forex (foreign currency exchange) market because the associated texts are too redundant. In this work, we propose a BERT-based Hierarchical Aggregation Model to summarize a large amount of finance news to predict forex movement. We firstly group news from different aspects: time, topic and category. Then we extract the most crucial news in each group by the SOTA extractive summarization method. Finally, we conduct interaction between the news and the trade data with attention to predict the forex movement. The experimental results show that the category based method performs best among three grouping methods and outperforms all the baselines. Besides, we study the influence of essential news attributes (category and region) by statistical analysis and summarize the influence patterns for different currency pairs.

pdf bib
Key Fact as Pivot: A Two-Stage Model for Low Resource Table-to-Text Generation
Shuming Ma | Pengcheng Yang | Tianyu Liu | Peng Li | Jie Zhou | Xu Sun
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Table-to-text generation aims to translate the structured data into the unstructured text. Most existing methods adopt the encoder-decoder framework to learn the transformation, which requires large-scale training samples. However, the lack of large parallel data is a major practical problem for many domains. In this work, we consider the scenario of low resource table-to-text generation, where only limited parallel data is available. We propose a novel model to separate the generation into two stages: key fact prediction and surface realization. It first predicts the key facts from the tables, and then generates the text with the key facts. The training of key fact prediction needs much fewer annotated data, while surface realization can be trained with pseudo parallel corpus. We evaluate our model on a biography generation dataset. Our model can achieve 27.34 BLEU score with only 1,000 parallel data, while the baseline model only obtain the performance of 9.71 BLEU score.

pdf bib
A Deep Reinforced Sequence-to-Set Model for Multi-Label Classification
Pengcheng Yang | Fuli Luo | Shuming Ma | Junyang Lin | Xu Sun
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Multi-label classification (MLC) aims to predict a set of labels for a given instance. Based on a pre-defined label order, the sequence-to-sequence (Seq2Seq) model trained via maximum likelihood estimation method has been successfully applied to the MLC task and shows powerful ability to capture high-order correlations between labels. However, the output labels are essentially an unordered set rather than an ordered sequence. This inconsistency tends to result in some intractable problems, e.g., sensitivity to the label order. To remedy this, we propose a simple but effective sequence-to-set model. The proposed model is trained via reinforcement learning, where reward feedback is designed to be independent of the label order. In this way, we can reduce the dependence of the model on the label order, as well as capture high-order correlations between labels. Extensive experiments show that our approach can substantially outperform competitive baselines, as well as effectively reduce the sensitivity to the label order.

2018

pdf bib
Does Higher Order LSTM Have Better Accuracy for Segmenting and Labeling Sequence Data?
Yi Zhang | Xu Sun | Shuming Ma | Yang Yang | Xuancheng Ren
Proceedings of the 27th International Conference on Computational Linguistics

Existing neural models usually predict the tag of the current token independent of the neighboring tags. The popular LSTM-CRF model considers the tag dependencies between every two consecutive tags. However, it is hard for existing neural models to take longer distance dependencies between tags into consideration. The scalability is mainly limited by the complex model structures and the cost of dynamic programming during training. In our work, we first design a new model called “high order LSTM” to predict multiple tags for the current token which contains not only the current tag but also the previous several tags. We call the number of tags in one prediction as “order”. Then we propose a new method called Multi-Order BiLSTM (MO-BiLSTM) which combines low order and high order LSTMs together. MO-BiLSTM keeps the scalability to high order models with a pruning technique. We evaluate MO-BiLSTM on all-phrase chunking and NER datasets. Experiment results show that MO-BiLSTM achieves the state-of-the-art result in chunking and highly competitive results in two NER datasets.

pdf bib
A Neural Question Answering Model Based on Semi-Structured Tables
Hao Wang | Xiaodong Zhang | Shuming Ma | Xu Sun | Houfeng Wang | Mengxiang Wang
Proceedings of the 27th International Conference on Computational Linguistics

Most question answering (QA) systems are based on raw text and structured knowledge graph. However, raw text corpora are hard for QA system to understand, and structured knowledge graph needs intensive manual work, while it is relatively easy to obtain semi-structured tables from many sources directly, or build them automatically. In this paper, we build an end-to-end system to answer multiple choice questions with semi-structured tables as its knowledge. Our system answers queries by two steps. First, it finds the most similar tables. Then the system measures the relevance between each question and candidate table cells, and choose the most related cell as the source of answer. The system is evaluated with TabMCQ dataset, and gets a huge improvement compared to the state of the art.

pdf bib
Deconvolution-Based Global Decoding for Neural Machine Translation
Junyang Lin | Xu Sun | Xuancheng Ren | Shuming Ma | Jinsong Su | Qi Su
Proceedings of the 27th International Conference on Computational Linguistics

A great proportion of sequence-to-sequence (Seq2Seq) models for Neural Machine Translation (NMT) adopt Recurrent Neural Network (RNN) to generate translation word by word following a sequential order. As the studies of linguistics have proved that language is not linear word sequence but sequence of complex structure, translation at each step should be conditioned on the whole target-side context. To tackle the problem, we propose a new NMT model that decodes the sequence with the guidance of its structural prediction of the context of the target sequence. Our model generates translation based on the structural prediction of the target-side context so that the translation can be freed from the bind of sequential order. Experimental results demonstrate that our model is more competitive compared with the state-of-the-art methods, and the analysis reflects that our model is also robust to translating sentences of different lengths and it also reduces repetition with the instruction from the target-side context for decoding.

pdf bib
SGM: Sequence Generation Model for Multi-label Classification
Pengcheng Yang | Xu Sun | Wei Li | Shuming Ma | Wei Wu | Houfeng Wang
Proceedings of the 27th International Conference on Computational Linguistics

Multi-label classification is an important yet challenging task in natural language processing. It is more complex than single-label classification in that the labels tend to be correlated. Existing methods tend to ignore the correlations between labels. Besides, different parts of the text can contribute differently for predicting different labels, which is not considered by existing models. In this paper, we propose to view the multi-label classification task as a sequence generation problem, and apply a sequence generation model with a novel decoder structure to solve it. Extensive experimental results show that our proposed methods outperform previous work by a substantial margin. Further analysis of experimental results demonstrates that the proposed methods not only capture the correlations between labels, but also select the most informative words automatically when predicting different labels.

pdf bib
Phrase-level Self-Attention Networks for Universal Sentence Encoding
Wei Wu | Houfeng Wang | Tianyu Liu | Shuming Ma
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Universal sentence encoding is a hot topic in recent NLP research. Attention mechanism has been an integral part in many sentence encoding models, allowing the models to capture context dependencies regardless of the distance between the elements in the sequence. Fully attention-based models have recently attracted enormous interest due to their highly parallelizable computation and significantly less training time. However, the memory consumption of their models grows quadratically with the sentence length, and the syntactic information is neglected. To this end, we propose Phrase-level Self-Attention Networks (PSAN) that perform self-attention across words inside a phrase to capture context dependencies at the phrase level, and use the gated memory updating mechanism to refine each word’s representation hierarchically with longer-term context dependencies captured in a larger phrase. As a result, the memory consumption can be reduced because the self-attention is performed at the phrase level instead of the sentence level. At the same time, syntactic information can be easily integrated in the model. Experiment results show that PSAN can achieve the state-of-the-art performance across a plethora of NLP tasks including binary and multi-class classification, natural language inference and sentence similarity.

pdf bib
Semantic-Unit-Based Dilated Convolution for Multi-Label Text Classification
Junyang Lin | Qi Su | Pengcheng Yang | Shuming Ma | Xu Sun
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

We propose a novel model for multi-label text classification, which is based on sequence-to-sequence learning. The model generates higher-level semantic unit representations with multi-level dilated convolution as well as a corresponding hybrid attention mechanism that extracts both the information at the word-level and the level of the semantic unit. Our designed dilated convolution effectively reduces dimension and supports an exponential expansion of receptive fields without loss of local information, and the attention-over-attention mechanism is able to capture more summary relevant information from the source context. Results of our experiments show that the proposed model has significant advantages over the baseline models on the dataset RCV1-V2 and Ren-CECps, and our analysis demonstrates that our model is competitive to the deterministic hierarchical models and it is more robust to classifying low-frequency labels

pdf bib
Query and Output: Generating Words by Querying Distributed Word Representations for Paraphrase Generation
Shuming Ma | Xu Sun | Wei Li | Sujian Li | Wenjie Li | Xuancheng Ren
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Most recent approaches use the sequence-to-sequence model for paraphrase generation. The existing sequence-to-sequence model tends to memorize the words and the patterns in the training dataset instead of learning the meaning of the words. Therefore, the generated sentences are often grammatically correct but semantically improper. In this work, we introduce a novel model based on the encoder-decoder framework, called Word Embedding Attention Network (WEAN). Our proposed model generates the words by querying distributed word representations (i.e. neural word embeddings), hoping to capturing the meaning of the according words. Following previous work, we evaluate our model on two paraphrase-oriented tasks, namely text simplification and short text abstractive summarization. Experimental results show that our model outperforms the sequence-to-sequence baseline by the BLEU score of 6.3 and 5.5 on two English text simplification datasets, and the ROUGE-2 F1 score of 5.7 on a Chinese summarization dataset. Moreover, our model achieves state-of-the-art performances on these three benchmark datasets.

pdf bib
Global Encoding for Abstractive Summarization
Junyang Lin | Xu Sun | Shuming Ma | Qi Su
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

In neural abstractive summarization, the conventional sequence-to-sequence (seq2seq) model often suffers from repetition and semantic irrelevance. To tackle the problem, we propose a global encoding framework, which controls the information flow from the encoder to the decoder based on the global information of the source context. It consists of a convolutional gated unit to perform global encoding to improve the representations of the source-side information. Evaluations on the LCSTS and the English Gigaword both demonstrate that our model outperforms the baseline models, and the analysis shows that our model is capable of generating summary of higher quality and reducing repetition.

pdf bib
Bag-of-Words as Target for Neural Machine Translation
Shuming Ma | Xu Sun | Yizhong Wang | Junyang Lin
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

A sentence can be translated into more than one correct sentences. However, most of the existing neural machine translation models only use one of the correct translations as the targets, and the other correct sentences are punished as the incorrect sentences in the training stage. Since most of the correct translations for one sentence share the similar bag-of-words, it is possible to distinguish the correct translations from the incorrect ones by the bag-of-words. In this paper, we propose an approach that uses both the sentences and the bag-of-words as targets in the training stage, in order to encourage the model to generate the potentially correct sentences that are not appeared in the training set. We evaluate our model on a Chinese-English translation dataset, and experiments show our model outperforms the strong baselines by the BLEU score of 4.55.

pdf bib
Automatic Academic Paper Rating Based on Modularized Hierarchical Convolutional Neural Network
Pengcheng Yang | Xu Sun | Wei Li | Shuming Ma
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

As more and more academic papers are being submitted to conferences and journals, evaluating all these papers by professionals is time-consuming and can cause inequality due to the personal factors of the reviewers. In this paper, in order to assist professionals in evaluating academic papers, we propose a novel task: automatic academic paper rating (AAPR), which automatically determine whether to accept academic papers. We build a new dataset for this task and propose a novel modularized hierarchical convolutional neural network to achieve automatic academic paper rating. Evaluation results show that the proposed model outperforms the baselines by a large margin. The dataset and code are available at https://github.com/lancopku/AAPR

pdf bib
Autoencoder as Assistant Supervisor: Improving Text Representation for Chinese Social Media Text Summarization
Shuming Ma | Xu Sun | Junyang Lin | Houfeng Wang
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Most of the current abstractive text summarization models are based on the sequence-to-sequence model (Seq2Seq). The source content of social media is long and noisy, so it is difficult for Seq2Seq to learn an accurate semantic representation. Compared with the source content, the annotated summary is short and well written. Moreover, it shares the same meaning as the source content. In this work, we supervise the learning of the representation of the source content with that of the summary. In implementation, we regard a summary autoencoder as an assistant supervisor of Seq2Seq. Following previous work, we evaluate our model on a popular Chinese social media dataset. Experimental results show that our model achieves the state-of-the-art performances on the benchmark dataset.

2017

pdf bib
Improving Semantic Relevance for Sequence-to-Sequence Learning of Chinese Social Media Text Summarization
Shuming Ma | Xu Sun | Jingjing Xu | Houfeng Wang | Wenjie Li | Qi Su
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Current Chinese social media text summarization models are based on an encoder-decoder framework. Although its generated summaries are similar to source texts literally, they have low semantic relevance. In this work, our goal is to improve semantic relevance between source texts and summaries for Chinese social media summarization. We introduce a Semantic Relevance Based neural model to encourage high semantic similarity between texts and summaries. In our model, the source text is represented by a gated attention encoder, while the summary representation is produced by a decoder. Besides, the similarity score between the representations is maximized during training. Our experiments show that the proposed model outperforms baseline systems on a social media corpus.