We analyze the operation of transformer language adapters, which are small modules trained on top of a frozen language model to adapt its predictions to new target languages. We show that adapted predictions mostly evolve in the source language the model was trained on, while the target language becomes pronounced only in the very last layers of the model. Moreover, the adaptation process is gradual and distributed across layers, where it is possible to skip small groups of adapters without decreasing adaptation performance. Last, we show that adapters operate on top of the model’s frozen representation space while largely preserving its structure, rather than on an isolated subspace. Our findings provide a deeper view into the adaptation process of language models to new languages, showcasing the constraints imposed on it by the underlying model and introduces practical implications to enhance its efficiency.
Despite the progress in building multilingual language models, evaluation is often limited to a few languages with available datasets which excludes a large number of low-resource languages. In this paper, we create SIB-200—a large-scale open-sourced benchmark dataset for topic classification in 205 languages and dialects to address the lack of evaluation dataset for Natural Language Understanding (NLU). For many of the languages covered in SIB-200, this is the first publicly available evaluation dataset for NLU. The dataset is based on Flores-200 machine translation corpus. We annotated the English portion of the dataset and extended the sentence-level annotation to the remaining 204 languages covered in the corpus. Despite the simplicity of this task, our evaluation in full-supervised setting, cross-lingual transfer setting and prompting of large language model setting show that there is still a large gap between the performance of high-resource and low-resource languages when multilingual evaluation is scaled to numerous world languages. We found that languages unseen during the pre-training of multilingual language models, languages from under-represented families (like Nilotic and Altantic-Congo), and languages from the regions of Africa, Americas, Oceania and South East Asia, often have the lowest performance on our topic classification dataset. We hope our dataset %will encourages a more inclusive evaluation of multilingual language models on a more diverse set of languages.
In-context learning is a popular inference strategy where large language models solve a task using only a few labeled demonstrations without needing any parameter updates. Although there have been extensive studies on English in-context learning, multilingual in-context learning remains under-explored, and we lack an in-depth understanding of the role of demonstrations in this context. To address this gap, we conduct a multidimensional analysis of multilingual in-context learning, experimenting with 5 models from different model families, 9 datasets covering classification and generation tasks, and 56 typologically diverse languages. Our results reveal that the effectiveness of demonstrations varies significantly across models, tasks, and languages. We also find that strong instruction-following models including Llama 2-Chat, GPT-3.5, and GPT-4 are largely insensitive to the quality of demonstrations. Instead, a carefully crafted template often eliminates the benefits of demonstrations for some tasks and languages altogether. These findings show that the importance of demonstrations might be overestimated. Our work highlights the need for granular evaluation across multiple axes towards a better understanding of in-context learning.
This paper presents our system developed for the SemEval-2024 Task 1: Semantic Textual Relatedness for African and Asian Languages. The shared task aims at measuring the semantic textual relatedness between pairs of sentences, with a focus on a range of under-represented languages. In this work, we propose using machine translation for data augmentation to address the low-resource challenge of limited training data. Moreover, we apply task-adaptive pre-training on unlabeled task data to bridge the gap between pre-training and task adaptation. For model training, we investigate both full fine-tuning and adapter-based tuning, and adopt the adapter framework for effective zero-shot cross-lingual transfer. We achieve competitive results in the shared task: our system performs the best among all ranked teams in both subtask A (supervised learning) and subtask C (cross-lingual transfer).
Nigerians have a notable online presence and actively discuss political and topical matters. This was particularly evident throughout the 2023 general election, where Twitter was used for campaigning, fact-checking and verification, and even positive and negative discourse. However, little or none has been done in the detection of abusive language and hate speech in Nigeria. In this paper, we curated code-switched Twitter data directed at three musketeers of the governorship election on the most populous and economically vibrant state in Nigeria; Lagos state, with the view to detect offensive speech in political discussions. We developed EkoHate—an abusive language and hate speech dataset for political discussions between the three candidates and their followers using a binary (normal vs offensive) and fine-grained four-label annotation scheme. We analysed our dataset and provided an empirical evaluation of state-of-the-art methods across both supervised and cross-lingual transfer learning settings. In the supervised setting, our evaluation results in both binary and four-label annotation schemes show that we can achieve 95.1 and 70.3 F1 points respectively. Furthermore, we show that our dataset adequately transfers very well to three publicly available offensive datasets (OLID, HateUS2020, and FountaHate), generalizing to political discussions in other regions like the US.
In this paper, we present AfricaPOS, the largest part-of-speech (POS) dataset for 20 typologically diverse African languages. We discuss the challenges in annotating POS for these languages using the universal dependencies (UD) guidelines. We conducted extensive POS baseline experiments using both conditional random field and several multilingual pre-trained language models. We applied various cross-lingual transfer models trained with data available in the UD. Evaluating on the AfricaPOS dataset, we show that choosing the best transfer language(s) in both single-source and multi-source setups greatly improves the POS tagging performance of the target languages, in particular when combined with parameter-fine-tuning methods. Crucially, transferring knowledge from a language that matches the language family and morphosyntactic properties seems to be more effective for POS tagging in unseen languages.
This paper investigates the performance of massively multilingual neural machine translation (NMT) systems in translating Yorùbá greetings (kú mask), which are a big part of Yorùbá language and culture, into English. To evaluate these models, we present IkiniYorùbá, a Yorùbá-English translation dataset containing some Yorùbá greetings, and sample use cases. We analysed the performance of different multilingual NMT systems including Google and NLLB and show that these models struggle to accurately translate Yorùbá greetings into English. In addition, we trained a Yorùbá-English model by fine-tuning an existing NMT model on the training split of IkiniYorùbá and this achieved better performance when compared to the pre-trained multilingual NMT models, although they were trained on a large volume of data.
African languages have far less in-language content available digitally, making it challenging for question answering systems to satisfy the information needs of users. Cross-lingual open-retrieval question answering (XOR QA) systems – those that retrieve answer content from other languages while serving people in their native language—offer a means of filling this gap. To this end, we create Our Dataset, the first cross-lingual QA dataset with a focus on African languages. Our Dataset includes 12,000+ XOR QA examples across 10 African languages. While previous datasets have focused primarily on languages where cross-lingual QA augments coverage from the target language, Our Dataset focuses on languages where cross-lingual answer content is the only high-coverage source of answer content. Because of this, we argue that African languages are one of the most important and realistic use cases for XOR QA. Our experiments demonstrate the poor performance of automatic translation and multilingual retrieval methods. Overall, Our Dataset proves challenging for state-of-the-art QA models. We hope that the dataset enables the development of more equitable QA technology.
Detecting harmful content on social media plat-forms is crucial in preventing the negative ef-fects these posts can have on social media users. This paper presents our methodology for tack-ling task 10 from SemEval23, which focuseson detecting and classifying online sexism insocial media posts. We constructed our solu-tion using an ensemble of transformer-basedmodels (that have been fine-tuned; BERTweet,RoBERTa, and DeBERTa). To alleviate the var-ious issues caused by the class imbalance inthe dataset provided and improve the general-ization of our model, our framework employsdata augmentation and semi-supervised learn-ing. Specifically, we use back-translation fordata augmentation in two scenarios: augment-ing the underrepresented class and augment-ing all classes. In this study, we analyze theimpact of these different strategies on the sys-tem’s overall performance and determine whichtechnique is the most effective. Extensive ex-periments demonstrate the efficacy of our ap-proach. For sub-task A, the system achievedan F1-score of 0.8613. The source code to re-produce the proposed solutions is available onGithub
African languages are spoken by over a billion people, but they are under-represented in NLP research and development. Multiple challenges exist, including the limited availability of annotated training and evaluation datasets as well as the lack of understanding of which settings, languages, and recently proposed methods like cross-lingual transfer will be effective. In this paper, we aim to move towards solutions for these challenges, focusing on the task of named entity recognition (NER). We present the creation of the largest to-date human-annotated NER dataset for 20 African languages. We study the behaviour of state-of-the-art cross-lingual transfer methods in an Africa-centric setting, empirically demonstrating that the choice of source transfer language significantly affects performance. While much previous work defaults to using English as the source language, our results show that choosing the best transfer language improves zero-shot F1 scores by an average of 14% over 20 languages as compared to using English.
Recent advances in the pre-training for language models leverage large-scale datasets to create multilingual models. However, low-resource languages are mostly left out in these datasets. This is primarily because many widely spoken languages that are not well represented on the web and therefore excluded from the large-scale crawls for datasets. Furthermore, downstream users of these models are restricted to the selection of languages originally chosen for pre-training. This work investigates how to optimally leverage existing pre-trained models to create low-resource translation systems for 16 African languages. We focus on two questions: 1) How can pre-trained models be used for languages not included in the initial pretraining? and 2) How can the resulting translation models effectively transfer to new domains? To answer these questions, we create a novel African news corpus covering 16 languages, of which eight languages are not part of any existing evaluation dataset. We demonstrate that the most effective strategy for transferring both additional languages and additional domains is to leverage small quantities of high-quality translation data to fine-tune large pre-trained models.
This paper describes the Inria ALMAnaCH team submission to the WMT 2022 general translation shared task. Participating in the language directions cs,ru,uk→en and cs↔uk, we experiment with the use of a dedicated Latin-script transcription convention aimed at representing all Slavic languages involved in a way that maximises character- and word-level correspondences between them as well as with the English language. Our hypothesis was that bringing the source and target language closer could have a positive impact on machine translation results. We provide multiple comparisons, including bilingual and multilingual baselines, with and without transcription. Initial results indicate that the transcription strategy was not successful, resulting in lower results than baselines. We nevertheless submitted our multilingual, transcribed models as our primary systems, and in this paper provide some indications as to why we got these negative results.
We participated in the WMT 2022 Large-Scale Machine Translation Evaluation for the African Languages Shared Task. This work describes our approach, which is based on filtering the given noisy data using a sentence-pair classifier that was built by fine-tuning a pre-trained language model. To train the classifier, we obtain positive samples (i.e. high-quality parallel sentences) from a gold-standard curated dataset and extract negative samples (i.e. low-quality parallel sentences) from automatically aligned parallel data by choosing sentences with low alignment scores. Our final machine translation model was then trained on filtered data, instead of the entire noisy dataset. We empirically validate our approach by evaluating on two common datasets and show that data filtering generally improves overall translation quality, in some cases even significantly.
Massively multilingual machine translation (MT) has shown impressive capabilities and including zero and few-shot translation between low-resource language pairs. However and these models are often evaluated on high-resource languages with the assumption that they generalize to low-resource ones. The difficulty of evaluating MT models on low-resource pairs is often due to lack of standardized evaluation datasets. In this paper and we present MENYO-20k and the first multi-domain parallel corpus with a especially curated orthography for Yoruba–English with standardized train-test splits for benchmarking. We provide several neural MT benchmarks and compare them to the performance of popular pre-trained (massively multilingual) MT models both for the heterogeneous test set and its subdomains. Since these pre-trained models use huge amounts of data with uncertain quality and we also analyze the effect of diacritics and a major characteristic of Yoruba and in the training data. We investigate how and when this training condition affects the final quality of a translation and its understandability.Our models outperform massively multilingual models such as Google (+8.7 BLEU) and Facebook M2M (+9.1) when translating to Yoruba and setting a high quality benchmark for future research.
We take a step towards addressing the under- representation of the African continent in NLP research by bringing together different stakeholders to create the first large, publicly available, high-quality dataset for named entity recognition (NER) in ten African languages. We detail the characteristics of these languages to help researchers and practitioners better understand the challenges they pose for NER tasks. We analyze our datasets and conduct an extensive empirical evaluation of state- of-the-art methods across both supervised and transfer learning settings. Finally, we release the data, code, and models to inspire future research on African NLP.1
We describe the EdinSaar submission to the shared task of Multilingual Low-Resource Translation for North Germanic Languages at the Sixth Conference on Machine Translation (WMT2021). We submit multilingual translation models for translations to/from Icelandic (is), Norwegian-Bokmal (nb), and Swedish (sv). We employ various experimental approaches, including multilingual pre-training, back-translation, fine-tuning, and ensembling. In most translation directions, our models outperform other submitted systems.
Multilingual transformer models like mBERT and XLM-RoBERTa have obtained great improvements for many NLP tasks on a variety of languages. However, recent works also showed that results from high-resource languages could not be easily transferred to realistic, low-resource scenarios. In this work, we study trends in performance for different amounts of available resources for the three African languages Hausa, isiXhosa and on both NER and topic classification. We show that in combination with transfer learning or distant supervision, these models can achieve with as little as 10 or 100 labeled sentences the same performance as baselines with much more supervised training data. However, we also find settings where this does not hold. Our discussions and additional experiments on assumptions such as time and hardware restrictions highlight challenges and opportunities in low-resource learning.
The success of several architectures to learn semantic representations from unannotated text and the availability of these kind of texts in online multilingual resources such as Wikipedia has facilitated the massive and automatic creation of resources for multiple languages. The evaluation of such resources is usually done for the high-resourced languages, where one has a smorgasbord of tasks and test sets to evaluate on. For low-resourced languages, the evaluation is more difficult and normally ignored, with the hope that the impressive capability of deep learning architectures to learn (multilingual) representations in the high-resourced setting holds in the low-resourced setting too. In this paper we focus on two African languages, Yorùbá and Twi, and compare the word embeddings obtained in this way, with word embeddings obtained from curated corpora and a language-dependent processing. We analyse the noise in the publicly available corpora, collect high quality and noisy data for the two languages and quantify the improvements that depend not only on the amount of data but on the quality too. We also use different architectures that learn word representations both from surface forms and characters to further exploit all the available information which showed to be important for these languages. For the evaluation, we manually translate the wordsim-353 word pairs dataset from English into Yorùbá and Twi. We extend the analysis to contextual word embeddings and evaluate multilingual BERT on a named entity recognition task. For this, we annotate with named entities the Global Voices corpus for Yorùbá. As output of the work, we provide corpora, embeddings and the test suits for both languages.
This paper describes the UdS-DFKI submission to the shared task for unsupervised machine translation (MT) and very low-resource supervised MT between German (de) and Upper Sorbian (hsb) at the Fifth Conference of Machine Translation (WMT20). We submit systems for both the supervised and unsupervised tracks. Apart from various experimental approaches like bitext mining, model pre-training, and iterative back-translation, we employ a factored machine translation approach on a small BPE vocabulary.