This paper explores the open research problem of understanding the social behaviors of LLM-based agents. Using Avalon as a testbed, we employ system prompts to guide LLM agents in gameplay. While previous studies have touched on gameplay with LLM agents, research on their social behaviors is lacking. We propose a novel framework, tailored for Avalon, features a multi-agent system facilitating efficient communication and interaction. We evaluate its performance based on game success and analyze LLM agents’ social behaviors. Results affirm the framework’s effectiveness in creating adaptive agents and suggest LLM-based agents’ potential in navigating dynamic social interactions. By examining collaboration and confrontation behaviors, we offer insights into this field’s research and applications.
Large language models (LLMs) have shown excellent performance on various NLP tasks. To use LLMs as strong sequential recommenders, we explore the in-context learning approach to sequential recommendation. We investigate the effects of instruction format, task consistency, demonstration selection, and number of demonstrations. As increasing the number of demonstrations in ICL does not improve accuracy despite using a long prompt, we propose a novel method called LLMSRec-Syn that incorporates multiple demonstration users into one aggregated demonstration. Our experiments on three recommendation datasets show that LLMSRec-Syn outperforms state-of-the-art LLM-based sequential recommendation methods. In some cases, LLMSRec-Syn can perform on par with or even better than supervised learning methods. Our code is publicly available at https://github.com/demoleiwang/LLMSRec_Syn.
Emergent Large Language Models (LLMs) use their extraordinary performance and powerful deduction capacity to discern from traditional language models. However, the expenses of computational resources and storage for these LLMs are stunning, quantization then arises as a trending conversation. To address accuracy decay caused by quantization, two streams of works in post-training quantization methods stand out. One uses other weights to compensate existing quantization error, while the other transfers the quantization difficulty to other parts in the model. Combining both merits, we introduce Learnable Singular value Increment (LSI) as an advanced solution. LSI uses Singular Value Decomposition to extract singular values of the weights and make them learnable to help weights compensate each other conditioned on activation. Incorporating LSI with existing techniques, we achieve state-of-the-art performance in diverse quantization settings, no matter in weight-only, weight-activation or extremely low bit scenarios. By unleashing the potential of LSI, efficient finetuning on quantized model is no longer a prohibitive problem.
Numeral systems and units of measurement are two conjoined topics in activities of human beings and have mutual effects with the languages expressing them. Currently, the evaluation of Large Language Models (LLMs) often involves mathematical reasoning, yet little attention is given to how minor changes in numbers or units can drastically alter the complexity of problems and the performance of LLMs. In this paper, we scrutinize existing LLMs on processing of numerals and units of measurement by constructing datasets with perturbations. We first anatomize the reasoning of math word problems to different sub-procedures like numeral conversions from language to numbers and measurement conversions based on units. Then we further annotate math word problems from ancient Chinese arithmetic works which are challenging in numerals and units of measurement. Experiments on perturbed datasets demonstrate that LLMs still encounter difficulties in handling numeral and measurement conversions.
Individuals engaging in online communication frequently express personal opinions with informal styles (e.g., memes and emojis). While Language Models (LMs) with informal communications have been widely discussed, a unique and emphatic style, the Repetitive Lengthening Form (RLF), has been overlooked for years. In this paper, we explore answers to two research questions: 1) Is RLF important for SA? 2) Can LMs understand RLF? Inspired by previous linguistic research, we curate **Lengthening**, the first multi-domain dataset with 850k samples focused on RLF for sentiment analysis. Moreover, we introduce **Explnstruct**, a two-stage Explainable Instruction Tuning framework aimed at improving both the performance and explainability of LLMs for RLF. We further propose a novel unified approach to quantify LMs’ understanding of informal expressions. We show that RLF sentences are expressive expressions and can serve as signatures of document-level sentiment. Additionally, RLF has potential value for online content analysis. Our comprehensive results show that fine-tuned Pre-trained Language Models (PLMs) can surpass zero-shot GPT-4 in performance but not in explanation for RLF. Finally, we show ExpInstruct can improve the open-sourced LLMs to match zero-shot GPT-4 in performance and explainability for RLF with limited samples. Code and sample data are available at https://github.com/Tom-Owl/OverlookedRLF
Knowledge graph embedding, which aims to learn representations of entities and relations in large scale knowledge graphs, plays a crucial part in various downstream applications. The performance of knowledge graph embedding models mainly depends on the ability of modeling relation patterns, such as symmetry/antisymmetry, inversion and composition (commutative composition and non-commutative composition). Most existing methods fail in modeling the non-commutative composition patterns. Several methods support this kind of pattern by modeling in quaternion space or dihedral group. However, extending to such sophisticated spaces leads to a substantial increase in the amount of parameters, which greatly reduces the parameter efficiency. In this paper, we propose a new knowledge graph embedding method called dual complex number knowledge graph embeddings (DCNE), which maps entities to the dual complex number space, and represents relations as rotations in 2D space via dual complex number multiplication. The non-commutativity of the dual complex number multiplication empowers DCNE to model the non-commutative composition patterns. In the meantime, modeling relations as rotations in 2D space can effectively improve the parameter efficiency. Extensive experiments on multiple benchmark knowledge graphs empirically show that DCNE achieves significant performance in link prediction and path query answering.
Data for the Rating Prediction (RP) sentiment analysis task such as star reviews are readily available. However, data for aspect-category sentiment analysis (ACSA) is often desired because of the fine-grained nature but are expensive to collect. In this work we present a method for learning ACSA using only RP labels. We propose Unified Sentiment Analysis (Uni-SA) to efficiently understand aspect and review sentiment in a unified manner. We propose a Distantly Supervised Pyramid Network (DSPN) to efficiently perform Aspect-Category Detection (ACD), ACSA, and OSA using only RP labels for training. We evaluate DSPN on multi-aspect review datasets in English and Chinese and find that with only star rating labels for supervision, DSPN performs comparably well to a variety of benchmark models. We also demonstrate the interpretability of DSPN’s outputs on reviews to show the pyramid structure inherent in document level end-to-end sentiment analysis.
Large language models (LLMs) have recently been shown to deliver impressive performance in various NLP tasks. To tackle multi-step reasoning tasks, Few-shot chain-of-thought (CoT) prompting includes a few manually crafted step-by-step reasoning demonstrations which enable LLMs to explicitly generate reasoning steps and improve their reasoning task accuracy. To eliminate the manual efforts, Zero-shot-CoT concatenates the target problem statement with “Let’s think step by step” as an input prompt to LLMs. Despite the success of Zero-shot-CoT, it still suffers from three pitfalls: calculation errors, missing-step errors, and semantic misunderstanding errors. To address the missing-step errors, we propose Plan-and-Solve (PS) Prompting. It consists of two components: first, devising a plan to divide the entire task into smaller subtasks, and then carrying out the subtasks according to the plan. To address the calculation errors and improve the quality of generated reasoning steps, we extend PS prompting with more detailed instructions and derive PS+ prompting. We evaluate our proposed prompting strategy on ten datasets across three reasoning problems. The experimental results over GPT-3 show that our proposed zero-shot prompting consistently outperforms Zero-shot-CoT across all datasets by a large margin, is comparable to or exceeds Zero-shot-Program-of-Thought Prompting, and has comparable performance with 8-shot CoT prompting on the math reasoning problem. The code can be found at https://github.com/AGI-Edgerunners/Plan-and-Solve-Prompting.
Existing MWP solvers employ sequence or binary tree to present the solution expression and decode it from given problem description. However, such structures fail to handle the variants that can be derived via mathematical manipulation, e.g., (a1+a2)*a3 and a1 * a3+a2 * a3 can both be possible valid solutions for a same problem but formulated as different expression sequences or trees. The multiple solution variants depicting different possible solving procedures for the same input problem would raise two issues: 1) making it hard for the model to learn the mapping function between the input and output spaces effectively, and 2) wrongly indicating wrong when evaluating a valid expression variant. To address these issues, we introduce a unified tree structure to present a solution expression, where the elements are permutable and identical for all the expression variants. We propose a novel non-autoregressive solver, named MWP-NAS, to parse the problem and deduce the solution expression based on the unified tree. For evaluating the possible expression variants, we design a path-based metric to evaluate the partial accuracy of expressions of a unified tree. The results from extensive experiments conducted on Math23K and MAWPS demonstrate the effectiveness of our proposed MWP-NAS. The codes and checkpoints are available at: https://github.com/mengqunhan/MWP-NAS.
The task of Question Generation over Knowledge Bases (KBQG) aims to convert a logical form into a natural language question. For the sake of expensive cost of large-scale question annotation, the methods of KBQG under low-resource scenarios urgently need to be developed. However, current methods heavily rely on annotated data for fine-tuning, which is not well-suited for few-shot question generation. The emergence of Large Language Models (LLMs) has shown their impressive generalization ability in few-shot tasks. Inspired by Chain-of-Thought (CoT) prompting, which is an in-context learning strategy for reasoning, we formulate KBQG task as a reasoning problem, where the generation of a complete question is splitted into a series of sub-question generation. Our proposed prompting method KQG-CoT first retrieves supportive logical forms from the unlabeled data pool taking account of the characteristics of the logical form. Then, we write a prompt to explicit the reasoning chain of generating complicated questions based on the selected demonstrations. To further ensure prompt quality, we extend KQG-CoT into KQG-CoT+ via sorting the logical forms by their complexity. We conduct extensive experiments over three public KBQG datasets. The results demonstrate that our prompting method consistently outperforms other prompting baselines on the evaluated datasets. Remarkably, our KQG-CoT+ method could surpass existing few-shot SoTA results of the PathQuestions dataset by 18.25, 10.72, and 10.18 absolute points on BLEU-4, METEOR, and ROUGE-L, respectively.
The success of large language models (LLMs), like GPT-4 and ChatGPT, has led to the development of numerous cost-effective and accessible alternatives that are created by finetuning open-access LLMs with task-specific data (e.g., ChatDoctor) or instruction data (e.g., Alpaca). Among the various fine-tuning methods, adapter-based parameter-efficient fine-tuning (PEFT) is undoubtedly one of the most attractive topics, as it only requires fine-tuning a few external parameters instead of the entire LLMs while achieving comparable or even better performance. To enable further research on PEFT methods of LLMs, this paper presents LLM-Adapters, an easy-to-use framework that integrates various adapters into LLMs and can execute these adapter-based PEFT methods of LLMs for different tasks. The framework includes state-of-the-art open-access LLMs such as LLaMA, BLOOM, and GPT-J, as well as widely used adapters such as Series adapters, Parallel adapter, Prompt-based learning and Reparametrization-based methods. Moreover, we conduct extensive empirical studies on the impact of adapter types, placement locations, and hyper-parameters to the best design for each adapter-based methods. We evaluate the effectiveness of the adapters on fourteen datasets from two different reasoning tasks, Arithmetic Reasoning and Commonsense Reasoning. The results demonstrate that using adapter-based PEFT in smaller-scale LLMs (7B) with few extra trainable parameters yields comparable, and in some cases superior, performance to powerful LLMs (175B) in zero-shot inference on simple math reasoning datasets.
Data visualization is a powerful tool for exploring and communicating insights in various domains. To automate visualization choice for datasets, a task known as visualization recommendation has been proposed. Various machine-learning-based approaches have been developed for this purpose, but they often require a large corpus of dataset-visualization pairs for training and lack natural explanations for their results. To address this research gap, we propose LLM4Vis, a novel ChatGPT-based prompting approach to perform visualization recommendation and return human-like explanations using very few demonstration examples. Our approach involves feature description, demonstration example selection, explanation generation, demonstration example construction, and inference steps. To obtain demonstration examples with high-quality explanations, we propose a new explanation generation bootstrapping to iteratively refine generated explanations by considering the previous generation and template-based hint. Evaluations on the VizML dataset show that LLM4Vis outperforms or performs similarly to supervised learning models like Random Forest, Decision Tree, and MLP, in both few-shot and zero-shot settings. The qualitative evaluation also shows the effectiveness of explanations generated by LLM4Vis.
With the help of Chain-of-Thought (CoT) prompting, Large Language Models (LLMs) have achieved remarkable performance on various reasoning tasks. However, most of them have been evaluated under noise-free context and the dilemma for LLMs to produce inaccurate results under the noisy context has not been fully investigated. Existing studies utilize trigger sentences to encourage LLMs to concentrate on the relevant information but the trigger has limited effect on final answer prediction. Inspired by interactive CoT method, where intermediate reasoning steps are promoted by multiple rounds of interaction between users and LLMs, we propose a novel prompting method, namely R3 prompting, for CoT reasoning under noisy context. Specifically, R3 prompting interacts with LLMs to perform key sentence extraction, variable declaration and answer prediction, which corresponds to a thought process of reviewing, rephrasing and resolving. The responses generated at the last interaction will perform as hints to guide toward the responses of the next interaction. Our experiments show that R3 prompting significantly outperforms existing CoT prompting methods on five reasoning tasks under noisy context. With GPT-3.5-turbo, we observe 3.7% accuracy improvement on average on the reasoning tasks under noisy context compared to the most competitive prompting baseline. More analyses and ablation studies show the robustness and generalization of R3 prompting method in solving reasoning tasks in LLMs under noisy context.
Given the fact description text of a legal case, legal judgment prediction (LJP) aims to predict the case’s charge, applicable law article, and term of penalty. A core problem of LJP is distinguishing confusing legal cases where only subtle text differences exist. Previous studies fail to distinguish different classification errors with a standard cross-entropy classification loss and ignore the numbers in the fact description for predicting the term of penalty. To tackle these issues, in this work, first, in order to exploit the numbers in legal cases for predicting the term of penalty of certain charges, we enhance the representation of the fact description with extracted crime amounts which are encoded by a pre-trained numeracy model. Second, we propose a moco-based supervised contrastive learning to learn distinguishable representations and explore the best strategy to construct positive example pairs to benefit all three subtasks of LJP simultaneously. Extensive experiments on real-world datasets show that the proposed method achieves new state-of-the-art results, particularly for confusing legal cases. Ablation studies also demonstrate the effectiveness of each component.
Knowledge graph embedding, which aims to learn representations of entities and relations in knowledge graphs, finds applications in various downstream tasks. The key to success of knowledge graph embedding models are the ability to model relation patterns including symmetry/antisymmetry, inversion, commutative composition and non-commutative composition. Although existing methods fail in modeling the non-commutative composition patterns, several approaches support this pattern by modeling beyond Euclidean space and complex space. Nevertheless, expanding to complicated spaces such as quaternion can easily lead to a substantial increase in the amount of parameters, which greatly reduces the computational efficiency. In this paper, we propose a new knowledge graph embedding method called RotateCT, which first transforms the coordinates of each entity, and then represents each relation as a rotation from head entity to tail entity in complex space. By design, RotateCT can infer the non-commutative composition patterns and improve the computational efficiency. Experiments on multiple datasets empirically show that RotateCT outperforms most state-of-the-art methods on link prediction and path query answering.
Transformer-based pre-trained language models (PLMs) mostly suffer from excessive overhead despite their advanced capacity. For resource-constrained devices, there is an urgent need for a spatially and temporally efficient model which retains the major capacity of PLMs. However, existing statically compressed models are unaware of the diverse complexities between input instances, potentially resulting in redundancy and inadequacy for simple and complex inputs. Also, miniature models with early exiting encounter challenges in the trade-off between making predictions and serving the deeper layers. Motivated by such considerations, we propose a collaborative optimization for PLMs that integrates static model compression and dynamic inference acceleration. Specifically, the PLM is slenderized in width while the depth remains intact, complementing layer-wise early exiting to speed up inference dynamically. To address the trade-off of early exiting, we propose a joint training approach that calibrates slenderization and preserves contributive structures to each exit instead of only the final layer. Experiments are conducted on GLUE benchmark and the results verify the Pareto optimality of our approach at high compression and acceleration rate with 1/8 parameters and 1/19 FLOPs of BERT.
With the development of medical digitization, the extraction and structuring of Electronic Medical Records (EMRs) have become challenging but fundamental tasks. How to accurately and automatically extract structured information from medical dialogues is especially difficult because the information needs to be inferred from complex interactions between the doctor and the patient. To this end, in this paper, we propose a speaker-aware co-attention framework for medical dialogue information extraction. To better utilize the pre-trained language representation model to perceive the semantics of the utterance and the candidate item, we develop a speaker-aware dialogue encoder with multi-task learning, which considers the speaker’s identity into account. To deal with complex interactions between different utterances and the correlations between utterances and candidate items, we propose a co-attention fusion network to aggregate the utterance information. We evaluate our framework on the public medical dialogue extraction datasets to demonstrate the superiority of our method, which can outperform the state-of-the-art methods by a large margin. Codes will be publicly available upon acceptance.
Prompt-based learning, which exploits knowledge from pre-trained language models by providing textual prompts and designing appropriate answer-category mapping methods, has achieved impressive successes on few-shot text classification and natural language inference (NLI). Because of the diverse linguistic expression, there exist many answer tokens for the same category. However, both manual answer design and automatic answer search constrain answer space and therefore hardly achieve ideal performance. To address this issue, we propose an answer space clustered prompting model (ASCM) together with a synonym initialization method (SI) which automatically categorizes all answer tokens in a semantic-clustered embedding space. We also propose a stable semi-supervised method named stair learning (SL) that orderly distills knowledge from better models to weaker models. Extensive experiments demonstrate that our ASCM+SL significantly outperforms existing state-of-the-art techniques in few-shot settings.
Math word problem (MWP) solving faces a dilemma in number representation learning. In order to avoid the number representation issue and reduce the search space of feasible solutions, existing works striving for MWP solving usually replace real numbers with symbolic placeholders to focus on logic reasoning. However, different from common symbolic reasoning tasks like program synthesis and knowledge graph reasoning, MWP solving has extra requirements in numerical reasoning. In other words, instead of the number value itself, it is the reusable numerical property that matters more in numerical reasoning. Therefore, we argue that injecting numerical properties into symbolic placeholders with contextualized representation learning schema can provide a way out of the dilemma in the number representation issue here. In this work, we introduce this idea to the popular pre-training language model (PLM) techniques and build MWP-BERT, an effective contextual number representation PLM. We demonstrate the effectiveness of our MWP-BERT on MWP solving and several MWP-specific understanding tasks on both English and Chinese benchmarks.
In this paper, we revisit math word problems (MWPs) from the cross-lingual and multilingual perspective. We construct our MWP solvers over pretrained multilingual language models using the sequence-to-sequence model with copy mechanism. We compare how the MWP solvers perform in cross-lingual and multilingual scenarios. To facilitate the comparison of cross-lingual performance, we first adapt the large-scale English dataset MathQA as a counterpart of the Chinese dataset Math23K. Then we extend several English datasets to bilingual datasets through machine translation plus human annotation. Our experiments show that the MWP solvers may not be transferred to a different language even if the target expressions share the same numerical constants and operator set. However, it can be better generalized if problem types exist on both source language and target language.
While diverse question answering (QA) datasets have been proposed and contributed significantly to the development of deep learning models for QA tasks, the existing datasets fall short in two aspects. First, we lack QA datasets covering complex questions that involve answers as well as the reasoning processes to get them. As a result, the state-of-the-art QA research on numerical reasoning still focuses on simple calculations and does not provide the mathematical expressions or evidence justifying the answers. Second, the QA community has contributed a lot of effort to improve the interpretability of QA models. However, they fail to explicitly show the reasoning process, such as the evidence order for reasoning and the interactions between different pieces of evidence. To address the above shortcoming, we introduce NOAHQA, a conversational and bilingual QA dataset with questions requiring numerical reasoning with compound mathematical expressions. With NOAHQA, we develop an interpretable reasoning graph as well as the appropriate evaluation metric to measure the answer quality. We evaluate the state-of-the-art QA models trained using existing QA datasets on NOAHQA and show that the best among them can only achieve 55.5 exact match scores, while the human performance is 89.7. We also present a new QA model for generating a reasoning graph where the reasoning graph metric still has a large gap compared with that of humans, eg, 28 scores.
While the recent tree-based neural models have demonstrated promising results in generating solution expression for the math word problem (MWP), most of these models do not capture the relationships and order information among the quantities well. This results in poor quantity representations and incorrect solution expressions. In this paper, we propose Graph2Tree, a novel deep learning architecture that combines the merits of the graph-based encoder and tree-based decoder to generate better solution expressions. Included in our Graph2Tree framework are two graphs, namely the Quantity Cell Graph and Quantity Comparison Graph, which are designed to address limitations of existing methods by effectively representing the relationships and order information among the quantities in MWPs. We conduct extensive experiments on two available datasets. Our experiment results show that Graph2Tree outperforms the state-of-the-art baselines on two benchmark datasets significantly. We also discuss case studies and empirically examine Graph2Tree’s effectiveness in translating the MWP text into solution expressions.
Several deep learning models have been proposed for solving math word problems (MWPs) automatically. Although these models have the ability to capture features without manual efforts, their approaches to capturing features are not specifically designed for MWPs. To utilize the merits of deep learning models with simultaneous consideration of MWPs’ specific features, we propose a group attention mechanism to extract global features, quantity-related features, quantity-pair features and question-related features in MWPs respectively. The experimental results show that the proposed approach performs significantly better than previous state-of-the-art methods, and boost performance from 66.9% to 69.5% on Math23K with training-test split, from 65.8% to 66.9% on Math23K with 5-fold cross-validation and from 69.2% to 76.1% on MAWPS.
To enrich vocabulary of low resource settings, we proposed a novel method which identify loanwords in monolingual corpora. More specifically, we first use cross-lingual word embeddings as the core feature to generate semantically related candidates based on comparable corpora and a small bilingual lexicon; then, a log-linear model which combines several shallow features such as pronunciation similarity and hybrid language model features to predict the final results. In this paper, we use Uyghur as the receipt language and try to detect loanwords in four donor languages: Arabic, Chinese, Persian and Russian. We conduct two groups of experiments to evaluate the effectiveness of our proposed approach: loanword identification and OOV translation in four language pairs and eight translation directions (Uyghur-Arabic, Arabic-Uyghur, Uyghur-Chinese, Chinese-Uyghur, Uyghur-Persian, Persian-Uyghur, Uyghur-Russian, and Russian-Uyghur). Experimental results on loanword identification show that our method outperforms other baseline models significantly. Neural machine translation models integrating results of loanword identification experiments achieve the best results on OOV translation(with 0.5-0.9 BLEU improvements)
Sequence-to-sequence (SEQ2SEQ) models have been successfully applied to automatic math word problem solving. Despite its simplicity, a drawback still remains: a math word problem can be correctly solved by more than one equations. This non-deterministic transduction harms the performance of maximum likelihood estimation. In this paper, by considering the uniqueness of expression tree, we propose an equation normalization method to normalize the duplicated equations. Moreover, we analyze the performance of three popular SEQ2SEQ models on the math word problem solving. We find that each model has its own specialty in solving problems, consequently an ensemble model is then proposed to combine their advantages. Experiments on dataset Math23K show that the ensemble model with equation normalization significantly outperforms the previous state-of-the-art methods.
To alleviate data sparsity in spoken Uyghur machine translation, we proposed a log-linear based morphological segmentation approach. Instead of learning model only from monolingual annotated corpus, this approach optimizes Uyghur segmentation for spoken translation based on both bilingual and monolingual corpus. Our approach relies on several features such as traditional conditional random field (CRF) feature, bilingual word alignment feature and monolingual suffixword co-occurrence feature. Experimental results shown that our proposed segmentation model for Uyghur spoken translation achieved 1.6 BLEU score improvements compared with the state-of-the-art baseline.