Roee Aharoni


2024

pdf bib
A Chain-of-Thought Is as Strong as Its Weakest Link: A Benchmark for Verifiers of Reasoning Chains
Alon Jacovi | Yonatan Bitton | Bernd Bohnet | Jonathan Herzig | Or Honovich | Michael Tseng | Michael Collins | Roee Aharoni | Mor Geva
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Prompting language models to provide step-by-step answers (e.g., “Chain-of-Thought”) is the prominent approach for complex reasoning tasks, where more accurate reasoning chains typically improve downstream task performance. Recent literature discusses automatic methods to verify reasoning to evaluate and improve their correctness. However, no fine-grained step-level datasets are available to enable thorough evaluation of such verification methods, hindering progress in this direction. We introduce REVEAL: Reasoning Verification Evaluation, a dataset to benchmark automatic verifiers of complex Chain-of-Thought reasoning in open-domain question-answering settings. REVEAL includes comprehensive labels for the relevance, attribution to evidence passages, and logical correctness of each reasoning step in a language model’s answer, across a variety of datasets and state-of-the-art language models. Evaluation on REVEAL shows that verifiers struggle at verifying reasoning chains - in particular, verifying logical correctness and detecting contradictions. Available at https://reveal-dataset.github.io/ .

pdf bib
Narrowing the Knowledge Evaluation Gap: Open-Domain Question Answering with Multi-Granularity Answers
Gal Yona | Roee Aharoni | Mor Geva
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Factual questions typically can be answered correctly at different levels of granularity. For example, both “August 4, 1961” and “1961” are correct answers to the question “When was Barack Obama born?”. Standard question answering (QA) evaluation protocols, however, do not explicitly take this into account and compare a predicted answer against answers of a single granularity level. In this work, we propose GRANOLA QA, a novel evaluation setting where a predicted answer is evaluated in terms of accuracy and informativeness against a set of multi-granularity answers. We present a simple methodology for enriching existing datasets with multi-granularity answers, and create GRANOLA-EQ, a multi-granularity version of the EntityQuestions dataset. We evaluate a range of decoding methods on GRANOLA-EQ, including a new algorithm, called Decoding with Response Aggregation (DRAG), that is geared towards aligning the response granularity with the model’s uncertainty. Our experiments show that large language models with standard decoding tend to generate specific answers, which are often incorrect. In contrast, when evaluated on multi-granularity answers, DRAG yields a nearly 20 point increase in accuracy on average, which further increases for rare entities. Overall, this reveals that standard evaluation and decoding schemes may significantly underestimate the knowledge encapsulated in LMs.

pdf bib
Can Large Language Models Faithfully Express Their Intrinsic Uncertainty in Words?
Gal Yona | Roee Aharoni | Mor Geva
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

We posit that large language models (LLMs) should be capable of expressing their intrinsic uncertainty in natural language. For example, if the LLM is equally likely to output two contradicting answers to the same question, then its generated response should reflect this uncertainty by hedging its answer (e.g., “I’m not sure, but I think...”). We formalize faithful response uncertainty based on the gap between the model’s intrinsic confidence in the assertions it makes and the decisiveness by which they are conveyed. This example-level metric reliably indicates whether the model reflects its uncertainty, as it penalizes both excessive and insufficient hedging. We evaluate a variety of aligned LLMs at faithfully conveying uncertainty on several knowledge-intensive question answering tasks. Our results provide strong evidence that modern LLMs are poor at faithfully conveying their uncertainty, and that better alignment is necessary to improve their trustworthiness.

pdf bib
Does Fine-Tuning LLMs on New Knowledge Encourage Hallucinations?
Zorik Gekhman | Gal Yona | Roee Aharoni | Matan Eyal | Amir Feder | Roi Reichart | Jonathan Herzig
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

When large language models are aligned via supervised fine-tuning, they may encounter new factual information that was not acquired through pre-training. It is often conjectured that this can teach the model the behavior of hallucinating factually incorrect responses, as the model is trained to generate facts that are not grounded in its pre-existing knowledge. In this work, we study the impact of such exposure to new knowledge on the capability of the fine-tuned model to utilize its pre-existing knowledge. To this end, we design a controlled setup, focused on closed-book QA, where we vary the proportion of the fine-tuning examples that introduce new knowledge. We demonstrate that large language models struggle to acquire new factual knowledge through fine-tuning, as fine-tuning examples that introduce new knowledge are learned significantly slower than those consistent with the model’s knowledge. However, we also find that as the examples with new knowledge are eventually learned, they linearly increase the model’s tendency to hallucinate. Taken together, our results highlight the risk in introducing new factual knowledge through fine-tuning, and support the view that large language models mostly acquire factual knowledge through pre-training, whereas fine-tuning teaches them to use it more efficiently.

pdf bib
Multilingual Instruction Tuning With Just a Pinch of Multilinguality
Uri Shaham | Jonathan Herzig | Roee Aharoni | Idan Szpektor | Reut Tsarfaty | Matan Eyal
Findings of the Association for Computational Linguistics: ACL 2024

As instruction-tuned large language models (LLMs) gain global adoption, their ability to follow instructions in multiple languages becomes increasingly crucial. In this work, we investigate how multilinguality during instruction tuning of a multilingual LLM affects instruction-following across languages from the pre-training corpus. We first show that many languages transfer some instruction-following capabilities to other languages from even monolingual tuning. Furthermore, we find that only 40 multilingual examples integrated in an English tuning set substantially improve multilingual instruction-following, both in seen and unseen languages during tuning. In general, we observe that models tuned on multilingual mixtures exhibit comparable or superior performance in multiple languages compared to monolingually tuned models, despite training on 10x fewer examples in those languages. Finally, we find that diversifying the instruction tuning set with even just 2-4 languages significantly improves cross-lingual generalization. Our results suggest that building massively multilingual instruction-tuned models can be done with only a very small set of multilingual instruction-responses.

2023

pdf bib
Factually Consistent Summarization via Reinforcement Learning with Textual Entailment Feedback
Paul Roit | Johan Ferret | Lior Shani | Roee Aharoni | Geoffrey Cideron | Robert Dadashi | Matthieu Geist | Sertan Girgin | Leonard Hussenot | Orgad Keller | Nikola Momchev | Sabela Ramos Garea | Piotr Stanczyk | Nino Vieillard | Olivier Bachem | Gal Elidan | Avinatan Hassidim | Olivier Pietquin | Idan Szpektor
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Despite the seeming success of contemporary grounded text generation systems, they often tend to generate factually inconsistent text with respect to their input. This phenomenon is emphasized in tasks like summarization, in which the generated summaries should be corroborated by their source article. In this work we leverage recent progress on textual entailment models to directly address this problem for abstractive summarization systems. We use reinforcement learning with reference-free, textual-entailment rewards to optimize for factual consistency and explore the ensuing trade-offs, as improved consistency may come at the cost of less informative or more extractive summaries. Our results, according to both automatic metrics and human evaluation, show that our method considerably improves the faithfulness, salience and conciseness of the generated summaries.

pdf bib
DisentQA: Disentangling Parametric and Contextual Knowledge with Counterfactual Question Answering
Ella Neeman | Roee Aharoni | Or Honovich | Leshem Choshen | Idan Szpektor | Omri Abend
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Question answering models commonly have access to two sources of “knowledge” during inference time: (1) parametric knowledge - the factual knowledge encoded in the model weights, and (2) contextual knowledge - external knowledge (e.g., a Wikipedia passage) given to the model to generate a grounded answer. Having these two sources of knowledge entangled together is a core issue for generative QA models as it is unclear whether the answer stems from the given non-parametric knowledge or not. This unclarity has implications on issues of trust, interpretability and factuality. In this work, we propose a new paradigm in which QA models are trained to disentangle the two sources of knowledge. Using counterfactual data augmentation, we introduce a model that predicts two answers for a given question: one based on given contextual knowledge and one based on parametric knowledge. Our experiments on the Natural Questions dataset show that this approach improves the performance of QA models by making them more robust to knowledge conflicts between the two knowledge sources, while generating useful disentangled answers.

pdf bib
Evaluating and Modeling Attribution for Cross-Lingual Question Answering
Benjamin Muller | John Wieting | Jonathan Clark | Tom Kwiatkowski | Sebastian Ruder | Livio Soares | Roee Aharoni | Jonathan Herzig | Xinyi Wang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Trustworthy answer content is abundant in many high-resource languages and is instantly accessible through question answering systems — yet this content can be hard to access for those that do not speak these languages. The leap forward in cross-lingual modeling quality offered by generative language models offers much promise, yet their raw generations often fall short in factuality. To improve trustworthiness in these systems, a promising direction is to attribute the answer to a retrieved source, possibly in a content-rich language different from the query. Our work is the first to study attribution for cross-lingual question answering. First, we collect data in 5 languages to assess the attribution level of a state-of-the-art cross-lingual QA system. To our surprise, we find that a substantial portion of the answers is not attributable to any retrieved passages (up to 50% of answers exactly matching a gold reference) despite the system being able to attend directly to the retrieved text. Second, to address this poor attribution level, we experiment with a wide range of attribution detection techniques. We find that Natural Language Inference models and PaLM 2 fine-tuned on a very small amount of attribution data can accurately detect attribution. With these models, we improve the attribution level of a cross-lingual QA system. Overall, we show that current academic generative cross-lingual QA systems have substantial shortcomings in attribution and we build tooling to mitigate these issues.

pdf bib
TrueTeacher: Learning Factual Consistency Evaluation with Large Language Models
Zorik Gekhman | Jonathan Herzig | Roee Aharoni | Chen Elkind | Idan Szpektor
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Factual consistency evaluation is often conducted using Natural Language Inference (NLI) models, yet these models exhibit limited success in evaluating summaries. Previous work improved such models with synthetic training data. However, the data is typically based on perturbed human-written summaries, which often differ in their characteristics from real model-generated summaries and have limited coverage of possible factual errors. Alternatively, large language models (LLMs) have recently shown promising results in directly evaluating generative tasks, but are too computationally expensive for practical use. Motivated by these limitations, we introduce TrueTeacher, a method for generating synthetic data by annotating diverse model-generated summaries using a LLM. Unlike prior work, TrueTeacher does not rely on human-written summaries, and is multilingual by nature. Experiments on the TRUE benchmark show that a student model trained using our data, substantially outperforms both the state-of-the-art model with similar capacity, and the LLM teacher. In a systematic study, we compare TrueTeacher to existing synthetic data generation methods and demonstrate its superiority and robustness to domain-shift. We also show that our method generalizes to multilingual scenarios. Lastly, we release our large scale synthetic dataset (1.4M examples), generated using TrueTeacher, and a checkpoint trained on this data.

pdf bib
SEAHORSE: A Multilingual, Multifaceted Dataset for Summarization Evaluation
Elizabeth Clark | Shruti Rijhwani | Sebastian Gehrmann | Joshua Maynez | Roee Aharoni | Vitaly Nikolaev | Thibault Sellam | Aditya Siddhant | Dipanjan Das | Ankur Parikh
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Reliable automatic evaluation of summarization systems is challenging due to the multifaceted and subjective nature of the task. This is especially the case for languages other than English, where human evaluations are scarce. In this work, we introduce SEAHORSE, a dataset for multilingual, multifaceted summarization evaluation. SEAHORSE consists of 96K summaries with human ratings along 6 dimensions of text quality: comprehensibility, repetition, grammar, attribution, main ideas, and conciseness, covering 6 languages, 9 systems, and 4 datasets. As a result of its size and scope, SEAHORSE can serve both as a benchmark to evaluate learnt metrics, as well as a large-scale resource for training such metrics. We show that metrics trained with SEAHORSE achieve strong performance on the out-of-domain meta-evaluation benchmarks TRUE (Honovich et al., 2022) and mFACE (Aharoni et al., 2022). We make the SEAHORSE dataset and metrics publicly available for future research on multilingual and multifaceted summarization evaluation.

pdf bib
q2d: Turning Questions into Dialogs to Teach Models How to Search
Yonatan Bitton | Shlomi Cohen-Ganor | Ido Hakimi | Yoad Lewenberg | Roee Aharoni | Enav Weinreb
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

One of the exciting capabilities of recent language models for dialog is their ability to independently search for relevant information to ground a given dialog response. However, obtaining training data to teach models how to issue search queries is time and resource consuming. In this work, we propose q2d: an automatic data generation pipeline that generates information-seeking dialogs from questions. We prompt a large language model (PaLM) to create conversational versions of question answering datasets, and use it to improve query generation models that communicate with external search APIs to ground dialog responses. Unlike previous approaches which relied on human written dialogs with search queries, our method allows to automatically generate query-based grounded dialogs with better control and scale. Our experiments demonstrate that: (1) For query generation on the QReCC dataset, models trained on our synthetically-generated data achieve 90%-97% of the performance of models trained on the human-generated data; (2) We can successfully generate data for training dialog models in new domains without any existing dialog data as demonstrated on the multi-hop MuSiQue and Bamboogle QA datasets. (3) We perform a thorough analysis of the generated dialogs showing that humans find them of high quality and struggle to distinguish them from human-written dialogs.

pdf bib
Multilingual Summarization with Factual Consistency Evaluation
Roee Aharoni | Shashi Narayan | Joshua Maynez | Jonathan Herzig | Elizabeth Clark | Mirella Lapata
Findings of the Association for Computational Linguistics: ACL 2023

Abstractive summarization has enjoyed renewed interest in recent years, thanks to pre-trained language models and the availability of large-scale datasets. Despite promising results, current models still suffer from generating factually inconsistent summaries, reducing their utility for real-world application. Several recent efforts attempt to address this by devising models that automatically detect factual inconsistencies in machine generated summaries. However, they focus exclusively on English, a language with abundant resources. In this work, we leverage factual consistency evaluation models to improve multilingual summarization. We explore two intuitive approaches to mitigate hallucinations based on the signal provided by a multilingual NLI model, namely data filtering and controlled generation. Experimental results in the 45 languages from the XLSum dataset show gains over strong baselines in both automatic and human evaluation. We release models and human judgements of summaries to foster progress towards more factually consistent multilingual summarization.

pdf bib
Multilingual Sequence-to-Sequence Models for Hebrew NLP
Matan Eyal | Hila Noga | Roee Aharoni | Idan Szpektor | Reut Tsarfaty
Findings of the Association for Computational Linguistics: ACL 2023

Recent work attributes progress in NLP to large language models (LMs) with increased model size and large quantities of pretraining data. Despite this, current state-of-the-art LMs for Hebrew are both under-parameterized and under-trained compared to LMs in other languages. Additionally, previous work on pretrained Hebrew LMs focused on encoder-only models. While the encoder-only architecture is beneficial for classification tasks, it does not cater well for sub-word prediction tasks, such as Named Entity Recognition, when considering the morphologically rich nature of Hebrew. In this paper we argue that sequence-to-sequence generative architectures are more suitable for large LMs in morphologically rich languages (MRLs) such as Hebrew. We demonstrate this by casting tasks in the Hebrew NLP pipeline as text-to-text tasks, for which we can leverage powerful multilingual, pretrained sequence-to-sequence models as mT5, eliminating the need for a separate, specialized, morpheme-based, decoder. Using this approach, our experiments show substantial improvements over previously published results on all existing Hebrew NLP benchmarks. These results suggest that multilingual sequence-to-sequence models present a promising building block for NLP for MRLs.

pdf bib
A Comprehensive Evaluation of Tool-Assisted Generation Strategies
Alon Jacovi | Avi Caciularu | Jonathan Herzig | Roee Aharoni | Bernd Bohnet | Mor Geva
Findings of the Association for Computational Linguistics: EMNLP 2023

A growing area of research investigates augmenting language models with tools (e.g., search engines, calculators) to overcome their shortcomings (e.g., missing or incorrect knowledge, incorrect logical inferences). Various few-shot tool-usage strategies have been proposed. However, there is no systematic and fair comparison across different strategies, or between these strategies and strong baselines that do not leverage tools. We conduct an extensive empirical analysis, finding that (1) across various datasets, example difficulty levels, and models, strong no-tool baselines are competitive to tool-assisted strategies, implying that effectively using tools with in-context demonstrations is a difficult unsolved problem; (2) for knowledge-retrieval tasks, strategies that *refine* incorrect outputs with tools outperform strategies that retrieve relevant information *ahead of* or *during generation*; (3) tool-assisted strategies are expensive in the number of tokens they require to work—incurring additional costs by orders of magnitude—which does not translate into significant improvement in performance. Overall, our findings suggest that few-shot tool integration is still an open challenge, emphasizing the need for comprehensive evaluations of future strategies to accurately assess their *benefits* and *costs*.

2022

pdf bib
TRUE: Re-evaluating Factual Consistency Evaluation
Or Honovich | Roee Aharoni | Jonathan Herzig | Hagai Taitelbaum | Doron Kukliansy | Vered Cohen | Thomas Scialom | Idan Szpektor | Avinatan Hassidim | Yossi Matias
Proceedings of the Second DialDoc Workshop on Document-grounded Dialogue and Conversational Question Answering

Grounded text generation systems often generate text that contains factual inconsistencies, hindering their real-world applicability. Automatic factual consistency evaluation may help alleviate this limitation by accelerating evaluation cycles, filtering inconsistent outputs and augmenting training data. While attracting increasing attention, such evaluation metrics are usually developed and evaluated in silo for a single task or dataset, slowing their adoption. Moreover, previous meta-evaluation protocols focused on system-level correlations with human annotations, which leave the example-level accuracy of such metrics unclear. In this work, we introduce TRUE: a comprehensive study of factual consistency metrics on a standardized collection of existing texts from diverse tasks, manually annotated for factual consistency. Our standardization enables an example-level meta-evaluation protocol that is more actionable and interpretable than previously reported correlations, yielding clearer quality measures. Across diverse state-of-the-art metrics and 11 datasets we find that large-scale NLI and question generation-and-answering-based approaches achieve strong and complementary results. We recommend those methods as a starting point for model and metric developers, and hope TRUE will foster progress towards even better methods.

pdf bib
TRUE: Re-evaluating Factual Consistency Evaluation
Or Honovich | Roee Aharoni | Jonathan Herzig | Hagai Taitelbaum | Doron Kukliansy | Vered Cohen | Thomas Scialom | Idan Szpektor | Avinatan Hassidim | Yossi Matias
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Grounded text generation systems often generate text that contains factual inconsistencies, hindering their real-world applicability. Automatic factual consistency evaluation may help alleviate this limitation by accelerating evaluation cycles, filtering inconsistent outputs and augmenting training data. While attracting increasing attention, such evaluation metrics are usually developed and evaluated in silo for a single task or dataset, slowing their adoption. Moreover, previous meta-evaluation protocols focused on system-level correlations with human annotations, which leave the example-level accuracy of such metrics unclear. In this work, we introduce TRUE: a comprehensive survey and assessment of factual consistency metrics on a standardized collection of existing texts from diverse tasks, manually annotated for factual consistency. Our standardization enables an example-level meta-evaluation protocol that is more actionable and interpretable than previously reported correlations, yielding clearer quality measures. Across diverse state-of-the-art metrics and 11 datasets we find that large-scale NLI and question generation-and-answering-based approaches achieve strong and complementary results. We recommend those methods as a starting point for model and metric developers, and hope TRUE will foster progress towards even better evaluation methods.

2021

pdf bib
Q2: Evaluating Factual Consistency in Knowledge-Grounded Dialogues via Question Generation and Question Answering
Or Honovich | Leshem Choshen | Roee Aharoni | Ella Neeman | Idan Szpektor | Omri Abend
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Neural knowledge-grounded generative models for dialogue often produce content that is factually inconsistent with the knowledge they rely on, making them unreliable and limiting their applicability. Inspired by recent work on evaluating factual consistency in abstractive summarization, we propose an automatic evaluation metric for factual consistency in knowledge-grounded dialogue using automatic question generation and question answering. Our metric, denoted Q2, compares answer spans using natural language inference (NLI), instead of token-based matching as done in previous work. To foster proper evaluation, we curate a novel dataset of dialogue system outputs for the Wizard-of-Wikipedia dataset, manually annotated for factual consistency. We perform a thorough meta-evaluation of Q2 against other metrics using this dataset and two others, where it consistently shows higher correlation with human judgements.

2020

pdf bib
Unsupervised Domain Clusters in Pretrained Language Models
Roee Aharoni | Yoav Goldberg
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

The notion of “in-domain data” in NLP is often over-simplistic and vague, as textual data varies in many nuanced linguistic aspects such as topic, style or level of formality. In addition, domain labels are many times unavailable, making it challenging to build domain-specific systems. We show that massive pre-trained language models implicitly learn sentence representations that cluster by domains without supervision – suggesting a simple data-driven definition of domains in textual data. We harness this property and propose domain data selection methods based on such models, which require only a small set of in-domain monolingual data. We evaluate our data selection methods for neural machine translation across five diverse domains, where they outperform an established approach as measured by both BLEU and precision and recall with respect to an oracle selection.

pdf bib
KoBE: Knowledge-Based Machine Translation Evaluation
Zorik Gekhman | Roee Aharoni | Genady Beryozkin | Markus Freitag | Wolfgang Macherey
Findings of the Association for Computational Linguistics: EMNLP 2020

We propose a simple and effective method for machine translation evaluation which does not require reference translations. Our approach is based on (1) grounding the entity mentions found in each source sentence and candidate translation against a large-scale multilingual knowledge base, and (2) measuring the recall of the grounded entities found in the candidate vs. those found in the source. Our approach achieves the highest correlation with human judgements on 9 out of the 18 language pairs from the WMT19 benchmark for evaluation without references, which is the largest number of wins for a single evaluation method on this task. On 4 language pairs, we also achieve higher correlation with human judgements than BLEU. To foster further research, we release a dataset containing 1.8 million grounded entity mentions across 18 language pairs from the WMT19 metrics track data.

2019

pdf bib
Diversify Your Datasets: Analyzing Generalization via Controlled Variance in Adversarial Datasets
Ohad Rozen | Vered Shwartz | Roee Aharoni | Ido Dagan
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)

Phenomenon-specific “adversarial” datasets have been recently designed to perform targeted stress-tests for particular inference types. Recent work (Liu et al., 2019a) proposed that such datasets can be utilized for training NLI and other types of models, often allowing to learn the phenomenon in focus and improve on the challenge dataset, indicating a “blind spot” in the original training data. Yet, although a model can improve in such a training process, it might still be vulnerable to other challenge datasets targeting the same phenomenon but drawn from a different distribution, such as having a different syntactic complexity level. In this work, we extend this method to drive conclusions about a model’s ability to learn and generalize a target phenomenon rather than to “learn” a dataset, by controlling additional aspects in the adversarial datasets. We demonstrate our approach on two inference phenomena – dative alternation and numerical reasoning, elaborating, and in some cases contradicting, the results of Liu et al.. Our methodology enables building better challenge datasets for creating more robust models, and may yield better model understanding and subsequent overarching improvements.

pdf bib
Massively Multilingual Neural Machine Translation
Roee Aharoni | Melvin Johnson | Orhan Firat
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Multilingual Neural Machine Translation enables training a single model that supports translation from multiple source languages into multiple target languages. We perform extensive experiments in training massively multilingual NMT models, involving up to 103 distinct languages and 204 translation directions simultaneously. We explore different setups for training such models and analyze the trade-offs between translation quality and various modeling decisions. We report results on the publicly available TED talks multilingual corpus where we show that massively multilingual many-to-many models are effective in low resource settings, outperforming the previous state-of-the-art while supporting up to 59 languages in 116 translation directions in a single model. Our experiments on a large-scale dataset with 103 languages, 204 trained directions and up to one million examples per direction also show promising results, surpassing strong bilingual baselines and encouraging future work on massively multilingual NMT.

pdf bib
Filling Gender & Number Gaps in Neural Machine Translation with Black-box Context Injection
Amit Moryossef | Roee Aharoni | Yoav Goldberg
Proceedings of the First Workshop on Gender Bias in Natural Language Processing

When translating from a language that does not morphologically mark information such as gender and number into a language that does, translation systems must “guess” this missing information, often leading to incorrect translations in the given context. We propose a black-box approach for injecting the missing information to a pre-trained neural machine translation system, allowing to control the morphological variations in the generated translations without changing the underlying model or training data. We evaluate our method on an English to Hebrew translation task, and show that it is effective in injecting the gender and number information and that supplying the correct information improves the translation accuracy in up to 2.3 BLEU on a female-speaker test set for a state-of-the-art online black-box system. Finally, we perform a fine-grained syntactic analysis of the generated translations that shows the effectiveness of our method.

2018

pdf bib
Split and Rephrase: Better Evaluation and Stronger Baselines
Roee Aharoni | Yoav Goldberg
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Splitting and rephrasing a complex sentence into several shorter sentences that convey the same meaning is a challenging problem in NLP. We show that while vanilla seq2seq models can reach high scores on the proposed benchmark (Narayan et al., 2017), they suffer from memorization of the training set which contains more than 89% of the unique simple sentences from the validation and test sets. To aid this, we present a new train-development-test data split and neural models augmented with a copy-mechanism, outperforming the best reported baseline by 8.68 BLEU and fostering further progress on the task.

2017

pdf bib
Morphological Inflection Generation with Hard Monotonic Attention
Roee Aharoni | Yoav Goldberg
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We present a neural model for morphological inflection generation which employs a hard attention mechanism, inspired by the nearly-monotonic alignment commonly found between the characters in a word and the characters in its inflection. We evaluate the model on three previously studied morphological inflection generation datasets and show that it provides state of the art results in various setups compared to previous neural and non-neural approaches. Finally we present an analysis of the continuous representations learned by both the hard and soft (Bahdanau, 2014) attention models for the task, shedding some light on the features such models extract.

pdf bib
Towards String-To-Tree Neural Machine Translation
Roee Aharoni | Yoav Goldberg
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

We present a simple method to incorporate syntactic information about the target language in a neural machine translation system by translating into linearized, lexicalized constituency trees. An experiment on the WMT16 German-English news translation task resulted in an improved BLEU score when compared to a syntax-agnostic NMT baseline trained on the same dataset. An analysis of the translations from the syntax-aware system shows that it performs more reordering during translation in comparison to the baseline. A small-scale human evaluation also showed an advantage to the syntax-aware system.

2016

pdf bib
Improving Sequence to Sequence Learning for Morphological Inflection Generation: The BIU-MIT Systems for the SIGMORPHON 2016 Shared Task for Morphological Reinflection
Roee Aharoni | Yoav Goldberg | Yonatan Belinkov
Proceedings of the 14th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

2014

pdf bib
Automatic Detection of Machine Translated Text and Translation Quality Estimation
Roee Aharoni | Moshe Koppel | Yoav Goldberg
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)