Existing popular video captioning benchmarks and models often produce generic captions for videos that lack specific identification of individuals, locations, or organizations (named entities). However, in the case of news videos, the setting is more demanding, requiring the inclusion of such named entities for meaningful summarization. Therefore, we introduce the task of directly summarizing news videos into captions that are entity-aware. To facilitate research in this area, we have collected a large-scale dataset named VIEWS (VIdeo NEWS). Within this task, we face challenges inherent to recognizing named entities and navigating diverse, dynamic contexts, all while relying solely on visual cues. To address these challenges, we propose a model-agnostic approach that enriches visual information extracted from videos with context sourced from external knowledge, enabling the generation of entity-aware captions. We validate the effectiveness of our approach across three video captioning models. Additionally, we conduct a critical analysis of our methodology to gain insights into the complexity of the task, the challenges it presents, and potential avenues for future research.
Recently, enabling pretrained language models (PLMs) to perform zero-shot crossmodal tasks such as video question answering has been extensively studied. A popular approach is to learn a projection network that projects visual features into the input text embedding space of a PLM, as well as feed-forward adaptation layers, with the weights of the PLM frozen. However, is it really necessary to learn such additional layers? In this paper, we make the first attempt to demonstrate that the PLM is able to perform zero-shot crossmodal tasks without any crossmodal pretraining, when the observed visual concepts are injected as both additional input text tokens and augmentation in the intermediate features within each feed-forward network for the PLM. Specifically, inputting observed visual concepts as text tokens helps to inject them through the self-attention layers in the PLM; to augment the intermediate features in a way that is compatible with the PLM, we propose to construct adaptation layers based on the intermediate representation of concepts (obtained by solely inputting them to the PLM). These two complementary injection mechanisms form the proposed Deep Concept Injection, which comprehensively enables the PLM to perceive instantly without crossmodal pretraining. Extensive empirical analysis on zero-shot video question answering, as well as visual question answering, shows Deep Concept Injection achieves competitive or even better results in both zero-shot and fine-tuning settings, compared to state-of-the-art methods that require crossmodal pretraining.
Advances in large vision-language models (LVLMs) have led to significant progress in generating natural language descriptions for visual contents. These powerful models are known for producing texts that are factually inconsistent with the visual input. While some efforts mitigate such inconsistencies in natural image captioning, the factuality of generated captions for structured visuals, such as charts, has not received as much scrutiny. This work introduces a comprehensive typology of factual errors in generated chart captions. A large-scale human annotation effort provides insight into the error patterns in captions generated by various models, ultimately forming the foundation of a dataset, CHOCOLATE. Our analysis reveals that even advanced models like GPT-4V frequently produce captions laced with factual inaccuracies. To combat this, we establish the task of Chart Caption Factual Error Correction and introduce CHARTVE, a visual entailment model that outperforms current LVLMs in evaluating caption factuality. Furthermore, we propose C2TFEC, an interpretable two-stage framework that excels at correcting factual errors. This work inaugurates a new domain in factual error correction for chart captions, presenting a novel evaluation metric, and demonstrating an effective approach to ensuring the factuality of generated chart captions. The code and data as well as the continuously updated benchmark can be found at: https://khuangaf.github.io/CHOCOLATE/.
Generating personalized responses, particularly in the context of video, poses a unique challenge for language models. This paper introduces the novel task of Personalized Video Comment Generation (PVCG), aiming to predict user comments tailored to both the input video and the user’s comment history, where the user is unseen during the model training process. Unlike existing video captioning tasks that ignores the personalization in the text generation process, we introduce PerVidCom, a new dataset specifically collected for this novel task with diverse personalized comments from YouTube. Recognizing the limitations of existing captioning metrics for evaluating this task, we propose a new automatic metric based on Large Language Models (LLMs) with few-shot in-context learning, named FICL-Score, specifically measuring quality from the aspects of emotion, language style and content relevance. We verify the proposed metric with human evaluations. We establish baselines using prominent Multimodal LLMs (MLLMs), analyze their performance discrepancies through extensive evaluation, and identifies directions for future improvement on this important task. Our research opens up a new direction of personalizing MLLMs and paves the way for future research.
Online resources such as WikiHow compile a wide range of scripts for performing everyday tasks, which can assist models in learning to reason about procedures. However, the scripts are always presented in a linear manner, which does not reflect the flexibility displayed by people executing tasks in real life. For example, in the CrossTask Dataset, 64.5% of consecutive step pairs are also observed in the reverse order, suggesting their ordering is not fixed. In addition, each step has an average of 2.56 frequent next steps, demonstrating “branching”. In this paper, we propose the new challenging task of non-sequential graph script induction, aiming to capture optional and interchangeable steps in procedural planning. To automate the induction of such graph scripts for given tasks, we propose to take advantage of loosely aligned videos of people performing the tasks. In particular, we design a multimodal framework to ground procedural videos to WikiHow textual steps and thus transform each video into an observed step path on the latent ground truth graph script. This key transformation enables us to train a script knowledge model capable of both generating explicit graph scripts for learnt tasks and predicting future steps given a partial step sequence. Our best model outperforms the strongest pure text/vision baselines by 17.52% absolute gains on F1@3 for next step prediction and 13.8% absolute gains on Acc@1 for partial sequence completion. Human evaluation shows our model outperforming the WikiHow linear baseline by 48.76% absolute gains in capturing sequential and non-sequential step relationships.
Vision-language tasks, such as VQA, SNLI-VE, and VCR are challenging because they require the model’s reasoning ability to understand the semantics of the visual world and natural language. Supervised methods working for vision-language tasks have been well-studied. However, solving these tasks in a zero-shot setting is less explored. Since Contrastive Language-Image Pre-training (CLIP) has shown remarkable zero-shot performance on image-text matching, previous works utilized its strong zero-shot ability by converting vision-language tasks into an image-text matching problem, and they mainly consider global-level matching (e.g., the whole image or sentence). However, we find visual and textual fine-grained information, e.g., keywords in the sentence and objects in the image, can be fairly informative for semantics understanding. Inspired by this, we propose a unified framework to take advantage of the fine-grained information for zero-shot vision-language learning, covering multiple tasks such as VQA, SNLI-VE, and VCR. Our experiments show that our framework outperforms former zero-shot methods on VQA and achieves substantial improvement on SNLI-VE and VCR. Furthermore, our ablation studies confirm the effectiveness and generalizability of our proposed method.
Building cross-model intelligence that can understand charts and communicate the salient information hidden behind them is an appealing challenge in the vision and language (V+L) community. The capability to uncover the underlined table data of chart figures is a critical key to automatic chart understanding. We introduce ChartT5, a V+L model that learns how to interpret table information from chart images via cross-modal pre-training on plot table pairs. Specifically, we propose two novel pre-training objectives: Masked Header Prediction (MHP) and Masked Value Prediction (MVP) to facilitate the model with different skills to interpret the table information. We have conducted extensive experiments on chart question answering and chart summarization to verify the effectiveness of the proposed pre-training strategies. In particular, on the ChartQA benchmark, our ChartT5 outperforms the state-of-the-art non-pretraining methods by over 8% performance gains.
Image-caption pretraining has been quite successfully used for downstream vision tasks like zero-shot image classification and object detection. However, image-caption pretraining is still a hard problem – it requires multiple concepts (nouns) from captions to be aligned to several objects in images. To tackle this problem, we go to the roots – the best learner, children. We take inspiration from cognitive science studies dealing with children’s language learning to propose a curriculum learning framework. The learning begins with easy-to-align image caption pairs containing one concept per caption. The difficulty is progressively increased with each new phase by adding one more concept per caption. Correspondingly, the knowledge acquired in each learning phase is utilized in subsequent phases to effectively constrain the learning problem to aligning one new concept-object pair in each phase. We show that this learning strategy improves over vanilla image-caption training in various settings – pretraining from scratch, using a pretrained image or/and pretrained text encoder, low data regime etc.
Vision-language (VL) understanding tasks evaluate models’ comprehension of complex visual scenes through multiple-choice questions. However, we have identified two dataset biases that models can exploit as shortcuts to resolve various VL tasks correctly without proper understanding. The first type of dataset bias is Unbalanced Matching bias, where the correct answer overlaps the question and image more than the incorrect answers. The second type of dataset bias is Distractor Similarity bias, where incorrect answers are overly dissimilar to the correct answer but significantly similar to other incorrect answers within the same sample. To address these dataset biases, we first propose Adversarial Data Synthesis (ADS) to generate synthetic training and debiased evaluation data. We then introduce Intra-sample Counterfactual Training (ICT) to assist models in utilizing the synthesized training data, particularly the counterfactual data, via focusing on intra-sample differentiation. Extensive experiments demonstrate the effectiveness of ADS and ICT in consistently improving model performance across different benchmarks, even in domain-shifted scenarios.
The field of vision-and-language (VL) understanding has made unprecedented progress with end-to-end large pre-trained VL models (VLMs). However, they still fall short in zero-shot reasoning tasks that require multi-step inferencing. To achieve this goal, previous works resort to a divide-and-conquer pipeline. In this paper, we argue that previous efforts have several inherent shortcomings: 1) They rely on domain-specific sub-question decomposing models. 2) They force models to predict the final answer even if the sub-questions or sub-answers provide insufficient information. We address these limitations via IdealGPT, a framework that iteratively decomposes VL reasoning using large language models (LLMs). Specifically, IdealGPT utilizes an LLM to generate sub-questions, a VLM to provide corresponding sub-answers, and another LLM to reason to achieve the final answer. These three modules perform the divide-and-conquer procedure iteratively until the model is confident about the final answer to the main question. We evaluate IdealGPT on multiple challenging VL reasoning tasks under a zero-shot setting. In particular, our IdealGPT outperforms the best existing GPT-4-like models by an absolute 10% on VCR and 15% on SNLI-VE. Code is available at https://github.com/Hxyou/IdealGPT.
We introduce RESIN-11, a new schema-guided event extraction&prediction framework that can be applied to a large variety of newsworthy scenarios. The framework consists of two parts: (1) an open-domain end-to-end multimedia multilingual information extraction system with weak-supervision and zero-shot learningbased techniques. (2) schema matching and schema-guided event prediction based on our curated schema library. We build a demo website based on our dockerized system and schema library publicly available for installation (https://github.com/RESIN-KAIROS/RESIN-11). We also include a video demonstrating the system.
Visual commonsense understanding requires Vision Language (VL) models to not only understand image and text but also cross-reference in-between to fully integrate and achieve comprehension of the visual scene described. Recently, various approaches have been developed and have achieved high performance on visual commonsense benchmarks. However, it is unclear whether the models really understand the visual scene and underlying commonsense knowledge due to limited evaluation data resources. To provide an in-depth analysis, we present a Multimodal Evaluation (ME) pipeline to automatically generate question-answer pairs to test models’ understanding of the visual scene, text, and related knowledge. We then take a step further to show that training with the ME data boosts the model’s performance in standard VCR evaluation. Lastly, our in-depth analysis and comparison reveal interesting findings: (1) semantically low-level information can assist the learning of high-level information but not the opposite; (2) visual information is generally under utilization compared with text.
Given a long untrimmed video and natural language queries, video grounding (VG) aims to temporally localize the semantically-aligned video segments. Almost all existing VG work holds two simple but unrealistic assumptions: 1) All query sentences can be grounded in the corresponding video. 2) All query sentences for the same video are always at the same semantic scale. Unfortunately, both assumptions make today’s VG models fail to work in practice. For example, in real-world multimodal assets (eg, news articles), most of the sentences in the article can not be grounded in their affiliated videos, and they typically have rich hierarchical relations (ie, at different semantic scales). To this end, we propose a new challenging grounding task: Weakly-Supervised temporal Article Grounding (WSAG). Specifically, given an article and a relevant video, WSAG aims to localize all “groundable” sentences to the video, and these sentences are possibly at different semantic scales. Accordingly, we collect the first WSAG dataset to facilitate this task: YouwikiHow, which borrows the inherent multi-scale descriptions in wikiHow articles and plentiful YouTube videos. In addition, we propose a simple but effective method DualMIL for WSAG, which consists of a two-level MIL loss and a single-/cross- sentence constraint loss. These training objectives are carefully designed for these relaxed assumptions. Extensive ablations have verified the effectiveness of DualMIL.
From a visual scene containing multiple people, human is able to distinguish each individual given the context descriptions about what happened before, their mental/physical states or intentions, etc. Above ability heavily relies on human-centric commonsense knowledge and reasoning. For example, if asked to identify the “person who needs healing” in an image, we need to first know that they usually have injuries or suffering expressions, then find the corresponding visual clues before finally grounding the person. We present a new commonsense task, Human-centric Commonsense Grounding, that tests the models’ ability to ground individuals given the context descriptions about what happened before, and their mental/physical states or intentions. We further create a benchmark, HumanCog, a dataset with 130k grounded commonsensical descriptions annotated on 67k images, covering diverse types of commonsense and visual scenes. We set up a context-object-aware method as a strong baseline that outperforms previous pre-trained and non-pretrained models. Further analysis demonstrates that rich visual commonsense and powerful integration of multi-modal commonsense are essential, which sheds light on future works. Data and code will be available at https://github.com/Hxyou/HumanCog.
Large-scale visual-linguistic pre-training aims to capture the generic representations from multimodal features, which are essential for downstream vision-language tasks. Existing methods mostly focus on learning the semantic connections between visual objects and linguistic content, which tend to be recognitionlevel information and may not be sufficient for commonsensical reasoning tasks like VCR. In this paper, we propose a novel commonsensical vision-language pre-training framework to bridge the gap. We first augment the conventional image-caption pre-training datasets with commonsense inferences from a visuallinguistic GPT-2. To pre-train models on image, caption and commonsense inferences together, we propose two new tasks: masked commonsense modeling (MCM) and commonsense type prediction (CTP). To reduce the shortcut effect between captions and commonsense inferences, we further introduce the domain-wise adaptive masking that dynamically adjusts the masking ratio. Experimental results on downstream tasks, VCR and VQA, show the improvement of our pre-training strategy over previous methods. Human evaluation also validates the relevance, informativeness, and diversity of the generated commonsense inferences. Overall, we demonstrate the potential of incorporating commonsense knowledge into the conventional recognition-level visual-linguistic pre-training.
To defend against machine-generated fake news, an effective mechanism is urgently needed. We contribute a novel benchmark for fake news detection at the knowledge element level, as well as a solution for this task which incorporates cross-media consistency checking to detect the fine-grained knowledge elements making news articles misinformative. Due to training data scarcity, we also formulate a novel data synthesis method by manipulating knowledge elements within the knowledge graph to generate noisy training data with specific, hard to detect, known inconsistencies. Our detection approach outperforms the state-of-the-art (up to 16.8% accuracy gain), and more critically, yields fine-grained explanations.
Pre-trained contextual vision-and-language (V&L) models have achieved impressive performance on various benchmarks. However, existing models require a large amount of parallel image-caption data for pre-training. Such data are costly to collect and require cumbersome curation. Inspired by unsupervised machine translation, we investigate if a strong V&L representation model can be learned through unsupervised pre-training without image-caption corpora. In particular, we propose to conduct “mask-and-predict” pre-training on text-only and image-only corpora and introduce the object tags detected by an object recognition model as anchor points to bridge two modalities. We find that such a simple approach achieves performance close to a model pre-trained with aligned data, on four English V&L benchmarks. Our work challenges the widely held notion that aligned data is necessary for V&L pre-training, while significantly reducing the amount of supervision needed for V&L models.
To combat COVID-19, both clinicians and scientists need to digest the vast amount of relevant biomedical knowledge in literature to understand the disease mechanism and the related biological functions. We have developed a novel and comprehensive knowledge discovery framework, COVID-KG to extract fine-grained multimedia knowledge elements (entities, relations and events) from scientific literature. We then exploit the constructed multimedia knowledge graphs (KGs) for question answering and report generation, using drug repurposing as a case study. Our framework also provides detailed contextual sentences, subfigures, and knowledge subgraphs as evidence. All of the data, KGs, reports.
We present a new information extraction system that can automatically construct temporal event graphs from a collection of news documents from multiple sources, multiple languages (English and Spanish for our experiment), and multiple data modalities (speech, text, image and video). The system advances state-of-the-art from two aspects: (1) extending from sentence-level event extraction to cross-document cross-lingual cross-media event extraction, coreference resolution and temporal event tracking; (2) using human curated event schema library to match and enhance the extraction output. We have made the dockerlized system publicly available for research purpose at GitHub, with a demo video.
Event coreference resolution is critical to understand events in the growing number of online news with multiple modalities including text, video, speech, etc. However, the events and entities depicting in different modalities may not be perfectly aligned and can be difficult to annotate, which makes the task especially challenging with little supervision available. To address the above issues, we propose a supervised model based on attention mechanism and an unsupervised model based on statistical machine translation, capable of learning the relative importance of modalities for event coreference resolution. Experiments on a video multimedia event dataset show that our multimodal models outperform text-only systems in event coreference resolution tasks. A careful analysis reveals that the performance gain of the multimodal model especially under unsupervised settings comes from better learning of visually salient events.
Visual and textual modalities contribute complementary information about events described in multimedia documents. Videos contain rich dynamics and detailed unfoldings of events, while text describes more high-level and abstract concepts. However, existing event extraction methods either do not handle video or solely target video while ignoring other modalities. In contrast, we propose the first approach to jointly extract events from both video and text articles. We introduce the new task of Video MultiMedia Event Extraction and propose two novel components to build the first system towards this task. First, we propose the first self-supervised cross-modal event coreference model that can determine coreference between video events and text events without any manually annotated pairs. Second, we introduce the first cross-modal transformer architecture, which extracts structured event information from both videos and text documents. We also construct and will publicly release a new benchmark of video-article pairs, consisting of 860 video-article pairs with extensive annotations for evaluating methods on this task. Our experimental results demonstrate the effectiveness of our proposed method on our new benchmark dataset. We achieve 6.0% and 5.8% absolute F-score gain on multimodal event coreference resolution and multimedia event extraction.
Most of the current cross-lingual transfer learning methods for Information Extraction (IE) have been only applied to name tagging. To tackle more complex tasks such as event extraction we need to transfer graph structures (event trigger linked to multiple arguments with various roles) across languages. We develop a novel share-and-transfer framework to reach this goal with three steps: (1) Convert each sentence in any language to language-universal graph structures; in this paper we explore two approaches based on universal dependency parses and complete graphs, respectively. (2) Represent each node in the graph structure with a cross-lingual word embedding so that all sentences in multiple languages can be represented with one shared semantic space. (3) Using this common semantic space, train event extractors from English training data and apply them to languages that do not have any event annotations. Experimental results on three languages (Spanish, Russian and Ukrainian) without any annotations show this framework achieves comparable performance to a state-of-the-art supervised model trained from more than 1,500 manually annotated event mentions.
We introduce a new task, MultiMedia Event Extraction, which aims to extract events and their arguments from multimedia documents. We develop the first benchmark and collect a dataset of 245 multimedia news articles with extensively annotated events and arguments. We propose a novel method, Weakly Aligned Structured Embedding (WASE), that encodes structured representations of semantic information from textual and visual data into a common embedding space. The structures are aligned across modalities by employing a weakly supervised training strategy, which enables exploiting available resources without explicit cross-media annotation. Compared to uni-modal state-of-the-art methods, our approach achieves 4.0% and 9.8% absolute F-score gains on text event argument role labeling and visual event extraction. Compared to state-of-the-art multimedia unstructured representations, we achieve 8.3% and 5.0% absolute F-score gains on multimedia event extraction and argument role labeling, respectively. By utilizing images, we extract 21.4% more event mentions than traditional text-only methods.
We present the first comprehensive, open source multimedia knowledge extraction system that takes a massive stream of unstructured, heterogeneous multimedia data from various sources and languages as input, and creates a coherent, structured knowledge base, indexing entities, relations, and events, following a rich, fine-grained ontology. Our system, GAIA, enables seamless search of complex graph queries, and retrieves multimedia evidence including text, images and videos. GAIA achieves top performance at the recent NIST TAC SM-KBP2019 evaluation. The system is publicly available at GitHub and DockerHub, with a narrated video that documents the system.
The identification of complex semantic structures such as events and entity relations, already a challenging Information Extraction task, is doubly difficult from sources written in under-resourced and under-annotated languages. We investigate the suitability of cross-lingual structure transfer techniques for these tasks. We exploit relation- and event-relevant language-universal features, leveraging both symbolic (including part-of-speech and dependency path) and distributional (including type representation and contextualized representation) information. By representing all entity mentions, event triggers, and contexts into this complex and structured multilingual common space, using graph convolutional networks, we can train a relation or event extractor from source language annotations and apply it to the target language. Extensive experiments on cross-lingual relation and event transfer among English, Chinese, and Arabic demonstrate that our approach achieves performance comparable to state-of-the-art supervised models trained on up to 3,000 manually annotated mentions: up to 62.6% F-score for Relation Extraction, and 63.1% F-score for Event Argument Role Labeling. The event argument role labeling model transferred from English to Chinese achieves similar performance as the model trained from Chinese. We thus find that language-universal symbolic and distributional representations are complementary for cross-lingual structure transfer.
Most previous efforts toward video captioning focus on generating generic descriptions, such as, “A man is talking.” We collect a news video dataset to generate enriched descriptions that include important background knowledge, such as named entities and related events, which allows the user to fully understand the video content. We develop an approach that uses video meta-data to retrieve topically related news documents for a video and extracts the events and named entities from these documents. Then, given the video as well as the extracted events and entities, we generate a description using a Knowledge-aware Video Description network. The model learns to incorporate entities found in the topically related documents into the description via an entity pointer network and the generation procedure is guided by the event and entity types from the topically related documents through a knowledge gate, which is a gating mechanism added to the model’s decoder that takes a one-hot vector of these types. We evaluate our approach on the new dataset of news videos we have collected, establishing the first benchmark for this dataset as well as proposing a new metric to evaluate these descriptions.
Current image captioning approaches generate descriptions which lack specific information, such as named entities that are involved in the images. In this paper we propose a new task which aims to generate informative image captions, given images and hashtags as input. We propose a simple but effective approach to tackle this problem. We first train a convolutional neural networks - long short term memory networks (CNN-LSTM) model to generate a template caption based on the input image. Then we use a knowledge graph based collective inference algorithm to fill in the template with specific named entities retrieved via the hashtags. Experiments on a new benchmark dataset collected from Flickr show that our model generates news-style image descriptions with much richer information. Our model outperforms unimodal baselines significantly with various evaluation metrics.