Traditionally, success in multilingual machine translation can be attributed to three key factors in training data: large volume, diverse translation directions, and high quality. In the current practice of fine-tuning large language models (LLMs) for translation, we revisit the importance of these factors. We find that LLMs display strong translation capability after being fine-tuned on as few as 32 parallel sentences and that fine-tuning on a single translation direction enables translation in multiple directions. However, the choice of direction is critical: fine-tuning LLMs with only English on the target side can lead to task misinterpretation, which hinders translation into non-English languages. Problems also arise when noisy synthetic data is placed on the target side, especially when the target language is well-represented in LLM pre-training. Yet interestingly, synthesized data in an under-represented language has a less pronounced effect. Our findings suggest that when adapting LLMs to translation, the requirement on data quantity can be eased but careful considerations are still crucial to prevent an LLM from exploiting unintended data biases.
Reinforcement Learning from Human Feedback significantly enhances Natural Language Processing by aligning language models with human expectations. A critical factor in this alignment is the strength of reward models used during training. This study explores whether stronger reward models invariably lead to better language models. In this paper, through experiments on relevance, factuality, and completeness tasks using the QA-FEEDBACK dataset and reward models based on Longformer, we uncover a surprising paradox: language models trained with moderately accurate reward models outperform those guided by highly accurate ones. This challenges the widely held belief that stronger reward models always lead to better language models, and opens up new avenues for future research into the key factors driving model performance and how to choose the most suitable reward models.
In recent years, multimodal large language models (MLLMs) have attracted widespread attention from both industry and academia. Based on the integration position, MLLMs can be categorized into external and internal fusion architectures, with the former being more predominant. However, there remains considerable debate on how to construct the optimal external fusion MLLM architecture, especially regarding the performance of different connectors on tasks with varying granularities. This paper systematically investigates the impact of connectors on MLLM performance. Specifically, we classify connectors into feature-preserving and feature-compressing types. Utilizing a unified classification standard, we categorize sub-tasks from three comprehensive benchmarks, MMBench, MME, and SEED-Bench, into three task types: coarse-grained perception, fine-grained perception, and reasoning, and evaluate the performance from this perspective. Our findings reveal significant performance differences between different types of connectors across various tasks, offering essential guidance for MLLM architecture design and advancing the understanding of MLLM architecture optimization.
We present LawBench, the first evaluation benchmark composed of 20 tasks aimed to assess the ability of Large Language Models (LLMs) to perform Chinese legal-related tasks. LawBench is meticulously crafted to enable precise assessment of LLMs’ legal capabilities from three cognitive levels that correspond to the widely accepted Bloom’s cognitive taxonomy. Using LawBench, we present a comprehensive evaluation of 21 popular LLMs and the first comparative analysis of the empirical results in order to reveal their relative strengths and weaknesses. All data, model predictions and evaluation code are accessible from https://github.com/open-compass/LawBench.
Retrieval-augmented generation has gained popularity as a framework to enhance large language models with external knowledge. However, its effectiveness hinges on the retrieval robustness of the model. If the model lacks retrieval robustness, its performance is constrained by the accuracy of the retriever, resulting in significant compromises when the retrieved context is irrelevant. In this paper, we evaluate the “implicit” retrieval robustness of various large language models, instructing them to directly output the final answer without explicitly judging the relevance of the retrieved context. Our findings reveal that fine-tuning on a mix of gold and distracting context significantly enhances the model’s robustness to retrieval inaccuracies, while still maintaining its ability to extract correct answers when retrieval is accurate. This suggests that large language models can implicitly handle relevant or irrelevant retrieved context by learning solely from the supervision of the final answer in an end-to-end manner. Introducing an additional process for explicit relevance judgment can be unnecessary and disrupts the end-to-end approach.
Large language models (LLMs) exhibit remarkable in-context learning (ICL) capabilities. However, the underlying working mechanism of ICL remains poorly understood. Recent research presents two conflicting views on ICL: One emphasizes the impact of similar examples in the demonstrations, stressing the need for label correctness and more shots. The other attributes it to LLMs’ inherent ability of task recognition, deeming label correctness and shot numbers of demonstrations as not crucial. In this work, we provide a Two-Dimensional Coordinate System that unifies both views into a systematic framework. The framework explains the behavior of ICL through two orthogonal variables: whether similar examples are presented in the demonstrations (perception) and whether LLMs can recognize the task (cognition). We propose the peak inverse rank metric to detect the task recognition ability of LLMs and study LLMs’ reactions to different definitions of similarity. Based on these, we conduct extensive experiments to elucidate how ICL functions across each quadrant on multiple representative classification tasks. Finally, we extend our analyses to generation tasks, showing that our coordinate system can also be used to interpret ICL for generation tasks effectively.
In-context learning is a popular inference strategy where large language models solve a task using only a few labeled demonstrations without needing any parameter updates. Although there have been extensive studies on English in-context learning, multilingual in-context learning remains under-explored, and we lack an in-depth understanding of the role of demonstrations in this context. To address this gap, we conduct a multidimensional analysis of multilingual in-context learning, experimenting with 5 models from different model families, 9 datasets covering classification and generation tasks, and 56 typologically diverse languages. Our results reveal that the effectiveness of demonstrations varies significantly across models, tasks, and languages. We also find that strong instruction-following models including Llama 2-Chat, GPT-3.5, and GPT-4 are largely insensitive to the quality of demonstrations. Instead, a carefully crafted template often eliminates the benefits of demonstrations for some tasks and languages altogether. These findings show that the importance of demonstrations might be overestimated. Our work highlights the need for granular evaluation across multiple axes towards a better understanding of in-context learning.
Fine-tuning and in-context learning (ICL) are two prevalent methods in imbuing large language models with task-specific knowledge. It is commonly believed that fine-tuning can surpass ICL given sufficient training samples as it allows the model to adjust its internal parameters based on the data. However, this paper presents a counterintuitive finding: For tasks with implicit patterns, ICL captures these patterns significantly better than fine-tuning. We developed several datasets featuring implicit patterns, such as sequences determining answers through parity or identifying reducible terms in calculations. We then evaluated the models’ understanding of these patterns under both fine-tuning and ICL across models ranging from 0.5B to 7B parameters. The results indicate that models employing ICL can quickly grasp deep patterns and significantly improve accuracy. In contrast, fine-tuning, despite utilizing thousands of times more training samples than ICL, achieved only limited improvements. We also proposed circuit shift theory from a mechanistic interpretability’s view to explain why ICL wins.
Recent research has shown that large language models (LLMs) can achieve remarkable translation performance through supervised fine-tuning (SFT) using only a small amount of parallel data. However, SFT simply instructs the model to imitate the reference translations at the token level, making it vulnerable to the noise present in the references. Hence, the assistance from SFT often reaches a plateau once the LLMs have achieved a certain level of translation capability, and further increasing the size of parallel data does not provide additional benefits. To overcome this plateau associated with imitation-based SFT, we propose a preference-based approach built upon the Plackett-Luce model. The objective is to steer LLMs towards a more nuanced understanding of translation preferences from a holistic view, while also being more resilient in the absence of gold translations. We further build a dataset named MAPLE to verify the effectiveness of our approach, which includes multiple translations of varying quality for each source sentence. Extensive experiments demonstrate the superiority of our approach in “breaking the plateau” across diverse LLMs and test settings. Our in-depth analysis underscores the pivotal role of diverse translations and accurate preference scores in the success of our approach.
Despite the progress in building multilingual language models, evaluation is often limited to a few languages with available datasets which excludes a large number of low-resource languages. In this paper, we create SIB-200—a large-scale open-sourced benchmark dataset for topic classification in 205 languages and dialects to address the lack of evaluation dataset for Natural Language Understanding (NLU). For many of the languages covered in SIB-200, this is the first publicly available evaluation dataset for NLU. The dataset is based on Flores-200 machine translation corpus. We annotated the English portion of the dataset and extended the sentence-level annotation to the remaining 204 languages covered in the corpus. Despite the simplicity of this task, our evaluation in full-supervised setting, cross-lingual transfer setting and prompting of large language model setting show that there is still a large gap between the performance of high-resource and low-resource languages when multilingual evaluation is scaled to numerous world languages. We found that languages unseen during the pre-training of multilingual language models, languages from under-represented families (like Nilotic and Altantic-Congo), and languages from the regions of Africa, Americas, Oceania and South East Asia, often have the lowest performance on our topic classification dataset. We hope our dataset %will encourages a more inclusive evaluation of multilingual language models on a more diverse set of languages.
Weakly supervised learning is a popular approach for training machine learning models in low-resource settings. Instead of requesting high-quality yet costly human annotations, it allows training models with noisy annotations obtained from various weak sources. Recently, many sophisticated approaches have been proposed for robust training under label noise, reporting impressive results. In this paper, we revisit the setup of these approaches and find that the benefits brought by these approaches are significantly overestimated. Specifically, we find that the success of existing weakly supervised learning approaches heavily relies on the availability of clean validation samples which, as we show, can be leveraged much more efficiently by simply training on them. After using these clean labels in training, the advantages of using these sophisticated approaches are mostly wiped out. This remains true even when reducing the size of the available clean data to just five samples per class, making these approaches impractical. To understand the true value of weakly supervised learning, we thoroughly analyze diverse NLP datasets and tasks to ascertain when and why weakly supervised approaches work. Based on our findings, we provide recommendations for future research.
Product Question Answering (PQA) systems are key in e-commerce applications as they provide responses to customers’ questions as they shop for products. While existing work on PQA focuses mainly on English, in practice there is need to support multiple customer languages while leveraging product information available in English. To study this practical industrial task, we present xPQA, a large-scale annotated cross-lingual PQA dataset in 12 languages, and report results in (1) candidate ranking, to select the best English candidate containing the information to answer a non-English question; and (2) answer generation, to generate a natural-sounding non-English answer based on the selected English candidate. We evaluate various approaches involving machine translation at runtime or offline, leveraging multilingual pre-trained LMs, and including or excluding xPQA training data. We find that in-domain data is essential as cross-lingual rankers trained on other domains perform poorly on the PQA task, and that translation-based approaches are most effective for candidate ranking while multilingual finetuning works best for answer generation. Still, there remains a significant performance gap between the English and the cross-lingual test sets.
Neural ranking (NR) has become a key component for open-domain question-answering in order to access external knowledge. However, training a good NR model requires substantial amounts of relevance annotations, which is very costly to scale. To address this, a growing body of research works have been proposed to reduce the annotation cost by training the NR model with weak supervision (WS) instead. These works differ in what resources they require and employ a diverse set of WS signals to train the model. Understanding such differences is crucial for choosing the right WS technique. To facilitate this understanding, we provide a structured overview of standard WS signals used for training a NR model. Based on their required resources, we divide them into three main categories: (1) only documents are needed; (2) documents and questions are needed; and (3) documents and question-answer pairs are needed. For every WS signal, we review its general idea and choices. Promising directions are outlined for future research.
Training deep neural networks (DNNs) under weak supervision has attracted increasing research attention as it can significantly reduce the annotation cost. However, labels from weak supervision can be noisy, and the high capacity of DNNs enables them to easily overfit the label noise, resulting in poor generalization. Recent methods leverage self-training to build noise-resistant models, in which a teacher trained under weak supervision is used to provide highly confident labels for teaching the students. Nevertheless, the teacher derived from such frameworks may have fitted a substantial amount of noise and therefore produce incorrect pseudo-labels with high confidence, leading to severe error propagation. In this work, we propose Meta Self-Refinement (MSR), a noise-resistant learning framework, to effectively combat label noise from weak supervision. Instead of relying on a fixed teacher trained with noisy labels, we encourage the teacher to refine its pseudo-labels. At each training step, MSR performs a meta gradient descent on the current mini-batch to maximize the student performance on a clean validation set. Extensive experimentation on eight NLP benchmarks demonstrates that MSR is robust against label noise in all settings and outperforms state-of-the-art methods by up to 11.4% in accuracy and 9.26% in F1 score.
Recent advances in the pre-training for language models leverage large-scale datasets to create multilingual models. However, low-resource languages are mostly left out in these datasets. This is primarily because many widely spoken languages that are not well represented on the web and therefore excluded from the large-scale crawls for datasets. Furthermore, downstream users of these models are restricted to the selection of languages originally chosen for pre-training. This work investigates how to optimally leverage existing pre-trained models to create low-resource translation systems for 16 African languages. We focus on two questions: 1) How can pre-trained models be used for languages not included in the initial pretraining? and 2) How can the resulting translation models effectively transfer to new domains? To answer these questions, we create a novel African news corpus covering 16 languages, of which eight languages are not part of any existing evaluation dataset. We demonstrate that the most effective strategy for transferring both additional languages and additional domains is to leverage small quantities of high-quality translation data to fine-tune large pre-trained models.
Large-scale pretrained language models have achieved SOTA results on NLP tasks. However, they have been shown vulnerable to adversarial attacks especially for logographic languages like Chinese. In this work, we propose RoCBert: a pretrained Chinese Bert that is robust to various forms of adversarial attacks like word perturbation, synonyms, typos, etc. It is pretrained with the contrastive learning objective which maximizes the label consistency under different synthesized adversarial examples. The model takes as input multimodal information including the semantic, phonetic and visual features. We show all these features areimportant to the model robustness since the attack can be performed in all the three forms. Across 5 Chinese NLU tasks, RoCBert outperforms strong baselines under three blackbox adversarial algorithms without sacrificing the performance on clean testset. It also performs the best in the toxic content detection task under human-made attacks.
We introduce question answering with a cotext in focus, a task that simulates a free interaction with a QA system. The user reads on a screen some information about a topic, and they can follow-up with questions that can be either related or not to the topic; and the answer can be found in the document containing the screen content or from other pages. We call such information context. To study the task, we construct FocusQA, a dataset for answer sentence selection (AS2) with 12,165011unique question/context pairs, and a total of 109,940 answers. To build the dataset, we developed a novel methodology that takes existing questions and pairs them with relevant contexts. To show the benefits of this approach, we present a comparative analysis with a set of questions written by humans after reading the context, showing that our approach greatly helps in eliciting more realistic question/context pairs. Finally, we show that the task poses several challenges for incorporating contextual information. In this respect, we introduce strong baselines for answer sentence selection that outperform the precision of state-of-the-art models for AS2 up to 21.3% absolute points.
Reasoning is central to human intelligence. However, fallacious arguments are common, and some exacerbate problems such as spreading misinformation about climate change. In this paper, we propose the task of logical fallacy detection, and provide a new dataset (Logic) of logical fallacies generally found in text, together with an additional challenge set for detecting logical fallacies in climate change claims (LogicClimate). Detecting logical fallacies is a hard problem as the model must understand the underlying logical structure of the argument. We find that existing pretrained large language models perform poorly on this task. In contrast, we show that a simple structure-aware classifier outperforms the best language model by 5.46% F1 scores on Logic and 4.51% on LogicClimate. We encourage future work to explore this task since (a) it can serve as a new reasoning challenge for language models, and (b) it can have potential applications in tackling the spread of misinformation. Our dataset and code are available at https://github.com/causalNLP/logical-fallacy
In conversational QA, models have to leverage information in previous turns to answer upcoming questions. Current approaches, such as Question Rewriting, struggle to extract relevant information as the conversation unwinds. We introduce the Common Ground (CG), an approach to accumulate conversational information as it emerges and select the relevant information at every turn. We show that CG offers a more efficient and human-like way to exploit conversational information compared to existing approaches, leading to improvements on Open Domain Conversational QA.
It is of great value to answer product questions based on heterogeneous information sources available on web product pages, e.g., semi-structured attributes, text descriptions, user-provided contents, etc. However, these sources have different structures and writing styles, which poses challenges for (1) evidence ranking, (2) source selection, and (3) answer generation. In this paper, we build a benchmark with annotations for both evidence selection and answer generation covering 6 information sources. Based on this benchmark, we conduct a comprehensive study and present a set of best practices. We show that all sources are important and contribute to answering questions. Handling all sources within one single model can produce comparable confidence scores across sources and combining multiple sources for training always helps, even for sources with totally different structures. We further propose a novel data augmentation method to iteratively create training samples for answer generation, which achieves close-to-human performance with only a few thousandannotations. Finally, we perform an in-depth error analysis of model predictions and highlight the challenges for future research.
Product question answering (PQA) aims to automatically address customer questions to improve their online shopping experience. Current research mainly focuses on finding answers from either unstructured text, like product descriptions and user reviews, or structured knowledge bases with pre-defined schemas. Apart from the above two sources, a lot of product information is represented in a semi-structured way, e.g., key-value pairs, lists, tables, json and xml files, etc. These semi-structured data can be a valuable answer source since they are better organized than free text, while being easier to construct than structured knowledge bases. However, little attention has been paid to them. To fill in this blank, here we study how to effectively incorporate semi-structured answer sources for PQA and focus on presenting answers in a natural, fluent sentence. To this end, we present semiPQA: a dataset to benchmark PQA over semi-structured data. It contains 11,243 written questions about json-formatted data covering 320 unique attribute types. Each data point is paired with manually-annotated text that describes its contents, so that we can train a neural answer presenter to present the data in a natural way. We provide baseline results and a deep analysis on the successes and challenges of leveraging semi-structured data for PQA. In general, state-of-the-art neural models can perform remarkably well when dealing with seen attribute types. For unseen attribute types, however, a noticeable drop is observed for both answer presentation and attribute ranking.
Large-scale pretrained language models have led to dramatic improvements in text generation. Impressive performance can be achieved by finetuning only on a small number of instances (few-shot setting). Nonetheless, almost all previous work simply applies random sampling to select the few-shot training instances. Little to no attention has been paid to the selection strategies and how they would affect model performance. In this work, we present a study on training instance selection in few-shot neural text generation. The selection decision is made based only on the unlabeled data so as to identify the most worthwhile data points that should be annotated under some budget of labeling cost. Based on the intuition that the few-shot training instances should be diverse and representative of the entire data distribution, we propose a simple selection strategy with K-means clustering. We show that even with the naive clustering-based approach, the generation models consistently outperform random sampling on three text generation tasks: data-to-text generation, document summarization and question generation. The code and training data are made available. We hope that this work will call for more attention on this largely unexplored area.
For many new application domains for data-to-text generation, the main obstacle in training neural models consists of a lack of training data. While usually large numbers of instances are available on the data side, often only very few text samples are available. To address this problem, we here propose a novel few-shot approach for this setting. Our approach automatically augments the data available for training by (i) generating new text samples based on replacing specific values by alternative ones from the same category, (ii) generating new text samples based on GPT-2, and (iii) proposing an automatic method for pairing the new text samples with data samples. As the text augmentation can introduce noise to the training data, we use cycle consistency as an objective, in order to make sure that a given data sample can be correctly reconstructed after having been formulated as text (and that text samples can be reconstructed from data). On both the E2E and WebNLG benchmarks, we show that this weakly supervised training paradigm is able to outperform fully supervised sequence-to-sequence models with less than 10% of the training set. By utilizing all annotated data, our model can boost the performance of a standard sequence-to-sequence model by over 5 BLEU points, establishing a new state-of-the-art on both datasets.
We propose a shared task on training instance selection for few-shot neural text generation. Large-scale pretrained language models have led to dramatic improvements in few-shot text generation. Nonetheless, almost all previous work simply applies random sampling to select the few-shot training instances. Little to no attention has been paid to the selection strategies and how they would affect model performance. Studying the selection strategy can help us (1) make the most use of our annotation budget in downstream tasks and (2) better benchmark few-shot text generative models. We welcome submissions that present their selection strategies and the effects on the generation quality.
Documents as short as a single sentence may inadvertently reveal sensitive information about their authors, including e.g. their gender or ethnicity. Style transfer is an effective way of transforming texts in order to remove any information that enables author profiling. However, for a number of current state-of-the-art approaches the improved privacy is accompanied by an undesirable drop in the down-stream utility of the transformed data. In this paper, we propose a simple, zero-shot way to effectively lower the risk of author profiling through multilingual back-translation using off-the-shelf translation models. We compare our models with five representative text style transfer models on three datasets across different domains. Results from both an automatic and a human evaluation show that our approach achieves the best overall performance while requiring no training data. We are able to lower the adversarial prediction of gender and race by up to 22% while retaining 95% of the original utility on downstream tasks.
Utterance classification is a key component in many conversational systems. However, classifying real-world user utterances is challenging, as people may express their ideas and thoughts in manifold ways, and the amount of training data for some categories may be fairly limited, resulting in imbalanced data distributions. To alleviate these issues, we conduct a comprehensive survey regarding data augmentation approaches for text classification, including simple random resampling, word-level transformations, and neural text generation to cope with imbalanced data. Our experiments focus on multi-class datasets with a large number of data samples, which has not been systematically studied in previous work. The results show that the effectiveness of different data augmentation schemes depends on the nature of the dataset under consideration.
We present a lightweight annotation tool, the Data AnnotatoR Tool (DART), for the general task of labeling structured data with textual descriptions. The tool is implemented as an interactive application that reduces human efforts in annotating large quantities of structured data, e.g. in the format of a table or tree structure. By using a backend sequence-to-sequence model, our system iteratively analyzes the annotated labels in order to better sample unlabeled data. In a simulation experiment performed on annotating large quantities of structured data, DART has been shown to reduce the total number of annotations needed with active learning and automatically suggesting relevant labels.
Neural network-based sequence-to-sequence (seq2seq) models strongly suffer from the low-diversity problem when it comes to open-domain dialogue generation. As bland and generic utterances usually dominate the frequency distribution in our daily chitchat, avoiding them to generate more interesting responses requires complex data filtering, sampling techniques or modifying the training objective. In this paper, we propose a new perspective to diversify dialogue generation by leveraging non-conversational text. Compared with bilateral conversations, non-conversational text are easier to obtain, more diverse and cover a much broader range of topics. We collect a large-scale non-conversational corpus from multi sources including forum comments, idioms and book snippets. We further present a training paradigm to effectively incorporate these text via iterative back translation. The resulting model is tested on two conversational datasets from different domains and is shown to produce significantly more diverse responses without sacrificing the relevance with context.
The neural attention model has achieved great success in data-to-text generation tasks. Though usually excelling at producing fluent text, it suffers from the problem of information missing, repetition and “hallucination”. Due to the black-box nature of the neural attention architecture, avoiding these problems in a systematic way is non-trivial. To address this concern, we propose to explicitly segment target text into fragment units and align them with their data correspondences. The segmentation and correspondence are jointly learned as latent variables without any human annotations. We further impose a soft statistical constraint to regularize the segmental granularity. The resulting architecture maintains the same expressive power as neural attention models, while being able to generate fully interpretable outputs with several times less computational cost. On both E2E and WebNLG benchmarks, we show the proposed model consistently outperforms its neural attention counterparts.
Being able to perform in-depth chat with humans in a closed domain is a precondition before an open-domain chatbot can be ever claimed. In this work, we take a close look at the movie domain and present a large-scale high-quality corpus with fine-grained annotations in hope of pushing the limit of movie-domain chatbots. We propose a unified, readily scalable neural approach which reconciles all subtasks like intent prediction and knowledge retrieval. The model is first pretrained on the huge general-domain data, then finetuned on our corpus. We show this simple neural approach trained on high-quality data is able to outperform commercial systems replying on complex rules. On both the static and interactive tests, we find responses generated by our system exhibits remarkably good engagement and sensibleness close to human-written ones. We further analyze the limits of our work and point out potential directions for future work
Recent research has achieved impressive results in single-turn dialogue modelling. In the multi-turn setting, however, current models are still far from satisfactory. One major challenge is the frequently occurred coreference and information omission in our daily conversation, making it hard for machines to understand the real intention. In this paper, we propose rewriting the human utterance as a pre-process to help multi-turn dialgoue modelling. Each utterance is first rewritten to recover all coreferred and omitted information. The next processing steps are then performed based on the rewritten utterance. To properly train the utterance rewriter, we collect a new dataset with human annotations and introduce a Transformer-based utterance rewriting architecture using the pointer network. We show the proposed architecture achieves remarkably good performance on the utterance rewriting task. The trained utterance rewriter can be easily integrated into online chatbots and brings general improvement over different domains.
Multi-sentence compression (MSC) aims to generate a grammatical but reduced compression from multiple input sentences while retaining their key information. Previous dominating approach for MSC is the extraction-based word graph approach. A few variants further leveraged lexical substitution to yield more abstractive compression. However, two limitations exist. First, the word graph approach that simply concatenates fragments from multiple sentences may yield non-fluent or ungrammatical compression. Second, lexical substitution is often inappropriate without the consideration of context information. To tackle the above-mentioned issues, we present a neural rewriter for multi-sentence compression that does not need any parallel corpus. Empirical studies have shown that our approach achieves comparable results upon automatic evaluation and improves the grammaticality of compression based on human evaluation. A parallel corpus with more than 140,000 (sentence group, compression) pairs is also constructed as a by-product for future research.
Many text generation tasks naturally contain two steps: content selection and surface realization. Current neural encoder-decoder models conflate both steps into a black-box architecture. As a result, the content to be described in the text cannot be explicitly controlled. This paper tackles this problem by decoupling content selection from the decoder. The decoupled content selection is human interpretable, whose value can be manually manipulated to control the content of generated text. The model can be trained end-to-end without human annotations by maximizing a lower bound of the marginal likelihood. We further propose an effective way to trade-off between performance and controllability with a single adjustable hyperparameter. In both data-to-text and headline generation tasks, our model achieves promising results, paving the way for controllable content selection in text generation.
Pointer Generators have been the de facto standard for modern summarization systems. However, this architecture faces two major drawbacks: Firstly, the pointer is limited to copying the exact words while ignoring possible inflections or abstractions, which restricts its power of capturing richer latent alignment. Secondly, the copy mechanism results in a strong bias towards extractive generations, where most sentences are produced by simply copying from the source text. In this paper, we address these problems by allowing the model to “edit” pointed tokens instead of always hard copying them. The editing is performed by transforming the pointed word vector into a target space with a learned relation embedding. On three large-scale summarization dataset, we show the model is able to (1) capture more latent alignment relations than exact word matches, (2) improve word alignment accuracy, allowing for better model interpretation and controlling, (3) generate higher-quality summaries validated by both qualitative and quantitative evaluations and (4) bring more abstraction to the generated summaries.
Sequence-to-Sequence (seq2seq) models have become overwhelmingly popular in building end-to-end trainable dialogue systems. Though highly efficient in learning the backbone of human-computer communications, they suffer from the problem of strongly favoring short generic responses. In this paper, we argue that a good response should smoothly connect both the preceding dialogue history and the following conversations. We strengthen this connection by mutual information maximization. To sidestep the non-differentiability of discrete natural language tokens, we introduce an auxiliary continuous code space and map such code space to a learnable prior distribution for generation purpose. Experiments on two dialogue datasets validate the effectiveness of our model, where the generated responses are closely related to the dialogue context and lead to more interactive conversations.
We develop a high-quality multi-turn dialog dataset, DailyDialog, which is intriguing in several aspects. The language is human-written and less noisy. The dialogues in the dataset reflect our daily communication way and cover various topics about our daily life. We also manually label the developed dataset with communication intention and emotion information. Then, we evaluate existing approaches on DailyDialog dataset and hope it benefit the research field of dialog systems. The dataset is available on http://yanran.li/dailydialog
Deep latent variable models have been shown to facilitate the response generation for open-domain dialog systems. However, these latent variables are highly randomized, leading to uncontrollable generated responses. In this paper, we propose a framework allowing conditional response generation based on specific attributes. These attributes can be either manually assigned or automatically detected. Moreover, the dialog states for both speakers are modeled separately in order to reflect personal features. We validate this framework on two different scenarios, where the attribute refers to genericness and sentiment states respectively. The experiment result testified the potential of our model, where meaningful responses can be generated in accordance with the specified attributes.