Fangyu Liu


2024

pdf bib
Faithful Chart Summarization with ChaTS-Pi
Syrine Krichene | Francesco Piccinno | Fangyu Liu | Julian Eisenschlos
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Chart-to-summary generation can help explore data, communicate insights, and help the visually impaired people. Multi-modal generative models have been used to produce fluent summaries, but they can suffer from factual and perceptual errors. In this work we present CHATS-CRITIC, a reference-free chart summarization metric for scoring faithfulness. CHATS-CRITIC is composed of an image-to-text model to recover the table from a chart, and a tabular entailment model applied to score the summary sentence by sentence. We find that CHATS-CRITIC evaluates the summary quality according to human ratings better than reference-based metrics, either learned or n-gram based, and can be further used to fix candidate summaries by removing not supported sentences. We then introduce CHATS-PI, a chart-to-summary pipeline that leverages CHATS-CRITIC during inference to fix and rank sampled candidates from any chart-summarization model. We evaluate CHATS-PI and CHATS-CRITIC using human raters, establishing state-of-the-art results on two popular chart-to-summary datasets.

pdf bib
LUQ: Long-text Uncertainty Quantification for LLMs
Caiqi Zhang | Fangyu Liu | Marco Basaldella | Nigel Collier
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Large Language Models (LLMs) have demonstrated remarkable capability in a variety of NLP tasks. However, LLMs are also prone to generate nonfactual content. Uncertainty Quantification (UQ) is pivotal in enhancing our understanding of a model’s confidence on its generation, thereby aiding in the mitigation of nonfactual outputs. Existing research on UQ predominantly targets short text generation, typically yielding brief, word-limited responses. However, real-world applications frequently necessitate much longer responses. Our study first highlights the limitations of current UQ methods in handling long text generation. We then introduce Luq and its two variations, a series of novel sampling-based UQ approaches specifically designed for long text. Our findings reveal that Luq outperforms existing baseline methods in correlating with the model’s factuality scores (negative coefficient of -0.85 observed for Gemini Pro). To further improve the factuality of LLM responses, we propose Luq-Ensemble, a method that ensembles responses from multiple models and selects the response with the lowest uncertainty. The ensembling method greatly improves the response factuality upon the best standalone LLM.

pdf bib
On-the-fly Denoising for Data Augmentation in Natural Language Understanding
Tianqing Fang | Wenxuan Zhou | Fangyu Liu | Hongming Zhang | Yangqiu Song | Muhao Chen
Findings of the Association for Computational Linguistics: EACL 2024

Data Augmentation (DA) is frequently used to provide additional training data without extra human annotation automatically.However, data augmentation may introduce noisy data that impairs training.To guarantee the quality of augmented data,existing methods either assume no noise exists in the augmented data and adopt consistency training or use simple heuristics such as training loss and diversity constraints to filter out “noisy” data.However, those filtered examples may still contain useful information, and dropping them completely causes a loss of supervision signals.In this paper, based on the assumption that the original dataset is cleaner than the augmented data, we propose an on-the-fly denoising technique for data augmentation that learns from soft augmented labels provided by an organic teacher model trained on the cleaner original data.To further prevent overfitting on noisy labels, a simple self-regularization module is applied to force the model prediction to be consistent across two distinct dropouts.Our method can be applied to general augmentation techniques and consistently improve the performance on both text classification and question-answering tasks.

pdf bib
Chart-based Reasoning: Transferring Capabilities from LLMs to VLMs
Victor Carbune | Hassan Mansoor | Fangyu Liu | Rahul Aralikatte | Gilles Baechler | Jindong Chen | Abhanshu Sharma
Findings of the Association for Computational Linguistics: NAACL 2024

Vision-language models (VLMs) are achieving increasingly strong performance on multimodal tasks. However, reasoning capabilities remain limited particularly for smaller VLMs, while those of large-language models (LLMs) have seen numerous improvements. We pro-pose a technique to transfer capabilities from LLMs to VLMs. On the recently introduced ChartQA, our method obtains state-of-the-artperformance when applied on the PaLI3-5B VLM by Chen et al. (2023c), while also enabling much better performance on PlotQA and FigureQA.We first improve the chart representation by continuing the pre-training stage using an improved version of the chart-to-table translation task by Liu et al. (2023a). We then propose constructing a 20x larger dataset than the original training set. To improve general reasoning capabilities and improve numerical operations, we synthesize reasoning traces using the table representation of charts. Lastly, our model is fine-tuned using the multitask loss introduced by Hsieh et al. (2023).Our variant ChartPaLI-5B outperforms even 10x larger models such as PaLIX-55B without using an upstream OCR system, while keeping inference time constant compared to the PaLI3-5B baseline. When rationales are further refined with a simple program-of-thought prompt (Chen et al., 2023a), our model outperforms the recently introduced Gemini Ultra and GPT-4V.

pdf bib
Plot Twist: Multimodal Models Don’t Comprehend Simple Chart Details
Yasaman Razeghi | Ishita Dasgupta | Fangyu Liu | Vinay Venkatesh Ramasesh | Sameer Singh
Findings of the Association for Computational Linguistics: EMNLP 2024

Recent advances in multimodal models show remarkable performance in real-world benchmarks for chart and figure understanding like ChartQA that involve interpreting trends, comparing data points, and extracting insights from visuals.In this paper, we investigate the extent to which these models truly comprehend the underlying information in charts by posing direct, elementary questions about simple features such as axes ranges and values to examine their fundamental visual understanding abilities in the context of charts.Our questions are applied to two sets of figures: synthetic and real-world.The empirical evaluation of 5 popular multimodal models on our dataset reveals shortfalls in understanding charts and figures, contrary to what their performance on complex benchmarks might suggest.For instance, Gemini Pro Vision only achieves 57.9% accuracy on our elementary set of questions on real-world plots, while other popular multimodal models showed similar or less performance.This work highlights an important limitation of current multimodal models, and cautions against overly optimistic interpretations of their abilities based on results of canonical evaluations.

pdf bib
Reranking Overgenerated Responses for End-to-End Task-Oriented Dialogue Systems
Songbo Hu | Ivan Vulić | Fangyu Liu | Anna Korhonen
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

End-to-end task-oriented dialogue systems are prone to fall into the so-called ‘likelihood trap’, resulting in generated responses which are dull, repetitive, and often inconsistent with dialogue history. Comparing ranked lists of multiple generated responses against the ‘gold response’ reveals a wide diversity in quality, with many good responses placed lower in the ranked list. The main challenge addressed in this work is how to reach beyond greedily generated system responses, that is, how to obtain and select high-quality responses from the list of overgenerated responses at inference without the availability of the gold response. To this end, we propose a simple yet effective reranking method to select high-quality items from the lists of initially overgenerated responses. The idea is to use any sequence-level scoring function to divide the semantic space of responses into high-scoring versus low-scoring partitions. At training, the high-scoring partition comprises all generated responses whose similarity to the gold response is higher than the similarity of the greedy response to the gold response. At inference, the aim is to estimate the probability that each overgenerated response belongs to the high-scoring partition. We evaluate our proposed method on the standard MultiWOZ dataset, the BiTOD dataset, and with human evaluation.

2023

pdf bib
MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering
Fangyu Liu | Francesco Piccinno | Syrine Krichene | Chenxi Pang | Kenton Lee | Mandar Joshi | Yasemin Altun | Nigel Collier | Julian Eisenschlos
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Visual language data such as plots, charts, and infographics are ubiquitous in the human world. However, state-of-the-art vision-language models do not perform well on these data. We propose MatCha (Math reasoning and Chart derendering pretraining) to enhance visual language models’ capabilities in jointly modeling charts/plots and language data. Specifically, we propose several pretraining tasks that cover plot deconstruction and numerical reasoning which are the key capabilities in visual language modeling. We perform the MatCha pretraining starting from Pix2Struct, a recently proposed image-to-text visual language model. On standard benchmarks such as PlotQA and ChartQA, the MatCha model outperforms state-of-the-art methods by as much as nearly 20%. We also examine how well MatCha pretraining transfers to domains such as screenshots, textbook diagrams, and document figures and observe overall improvement, verifying the usefulness of MatCha pretraining on broader visual language tasks.

pdf bib
WinoDict: Probing language models for in-context word acquisition
Julian Martin Eisenschlos | Jeremy R. Cole | Fangyu Liu | William W. Cohen
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

We introduce a new in-context learning paradigm to measure Large Language Models’ (LLMs) ability to learn novel words during inference. In particular, we rewrite Winograd-style co-reference resolution problems by replacing the key concept word with a synthetic but plausible word that the model must understand to complete the task. Solving this task requires the model to make use of the dictionary definition of the new word given in the prompt. This benchmark addresses word acquisition, one important aspect of the diachronic degradation known to afflict LLMs. As LLMs are frozen in time at the moment they are trained, they are normally unable to reflect the way language changes over time. We show that the accuracy of LLMs compared to the original Winograd tasks decreases radically in our benchmark, thus identifying a limitation of current models and providing a benchmark to measure future improvements in LLMs ability to do in-context learning.

pdf bib
Probing Cross-Lingual Lexical Knowledge from Multilingual Sentence Encoders
Ivan Vulić | Goran Glavaš | Fangyu Liu | Nigel Collier | Edoardo Maria Ponti | Anna Korhonen
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Pretrained multilingual language models (LMs) can be successfully transformed into multilingual sentence encoders (SEs; e.g., LaBSE, xMPNet) via additional fine-tuning or model distillation with parallel data. However, it remains unclear how to best leverage them to represent sub-sentence lexical items (i.e., words and phrases) in cross-lingual lexical tasks. In this work, we probe SEs for the amount of cross-lingual lexical knowledge stored in their parameters, and compare them against the original multilingual LMs. We also devise a simple yet efficient method for exposing the cross-lingual lexical knowledge by means of additional fine-tuning through inexpensive contrastive learning that requires only a small amount of word translation pairs. Using bilingual lexical induction (BLI), cross-lingual lexical semantic similarity, and cross-lingual entity linking as lexical probing tasks, we report substantial gains on standard benchmarks (e.g., +10 Precision@1 points in BLI). The results indicate that the SEs such as LaBSE can be ‘rewired’ into effective cross-lingual lexical encoders via the contrastive learning procedure, and that it is possible to expose more cross-lingual lexical knowledge compared to using them as off-the-shelf SEs. This way, we also provide an effective tool for harnessing ‘covert’ multilingual lexical knowledge hidden in multilingual sentence encoders.

pdf bib
DePlot: One-shot visual language reasoning by plot-to-table translation
Fangyu Liu | Julian Eisenschlos | Francesco Piccinno | Syrine Krichene | Chenxi Pang | Kenton Lee | Mandar Joshi | Wenhu Chen | Nigel Collier | Yasemin Altun
Findings of the Association for Computational Linguistics: ACL 2023

Visual language such as charts and plots is ubiquitous in the human world. Comprehending plots and charts requires strong reasoning skills. Prior state-of-the-art (SOTA) models require at least tens of thousands of training examples and their reasoning capabilities are still much limited, especially on complex human-written queries. This paper presents the first one-shot solution to visual language reasoning. We decompose the challenge of visual language reasoning into two steps: (1) plot-to-text translation, and (2) reasoning over the translated text. The key in this method is a modality conversion module, named as DePlot, which translates the image of a plot or chart to a linearized table. The output of DePlot can then be directly used to prompt a pretrained large language model (LLM), exploiting the few-shot reasoning capabilities of LLMs. To obtain DePlot, we standardize the plot-to-table task by establishing unified task formats and metrics, and train DePlot end-to-end on this task. DePlot can then be used off-the-shelf together with LLMs in a plug-and-play fashion. Compared with a SOTA model finetuned on more than thousands of data points, DePlot+LLM with just one-shot prompting achieves a 29.4% improvement over finetuned SOTA on human-written queries from the task of chart QA.

pdf bib
POSQA: Probe the World Models of LLMs with Size Comparisons
Chang Shu | Jiuzhou Han | Fangyu Liu | Ehsan Shareghi | Nigel Collier
Findings of the Association for Computational Linguistics: EMNLP 2023

Embodied language comprehension emphasizes that language understanding is not solely a matter of mental processing in the brain but also involves interactions with the physical and social environment. With the explosive growth of Large Language Models (LLMs) and their already ubiquitous presence in our daily lives, it is becoming increasingly necessary to verify their real-world understanding. Inspired by cognitive theories, we propose POSQA: a Physical Object Size Question Answering dataset with simple size comparison questions to examine the extremity and analyze the potential mechanisms of the embodied comprehension of the latest LLMs. We show that even the largest LLMs today perform poorly under the zero-shot setting. We then push their limits with advanced prompting techniques and external knowledge augmentation. Furthermore, we investigate whether their real-world comprehension primarily derives from contextual information or internal weights and analyse the impact of prompt formats and report bias of different objects. Our results show that real-world understanding that LLMs shaped from textual data can be vulnerable to deception and confusion by the surface form of prompts, which makes it less aligned with human behaviours.

pdf bib
Visual Spatial Reasoning
Fangyu Liu | Guy Emerson | Nigel Collier
Transactions of the Association for Computational Linguistics, Volume 11

Spatial relations are a basic part of human cognition. However, they are expressed in natural language in a variety of ways, and previous work has suggested that current vision-and-language models (VLMs) struggle to capture relational information. In this paper, we present Visual Spatial Reasoning (VSR), a dataset containing more than 10k natural text-image pairs with 66 types of spatial relations in English (e.g., under, in front of, facing). While using a seemingly simple annotation format, we show how the dataset includes challenging linguistic phenomena, such as varying reference frames. We demonstrate a large gap between human and model performance: The human ceiling is above 95%, while state-of-the-art models only achieve around 70%. We observe that VLMs’ by-relation performances have little correlation with the number of training examples and the tested models are in general incapable of recognising relations concerning the orientations of objects.1

pdf bib
Compositional Zero-Shot Domain Transfer with Text-to-Text Models
Fangyu Liu | Qianchu Liu | Shruthi Bannur | Fernando Pérez-García | Naoto Usuyama | Sheng Zhang | Tristan Naumann | Aditya Nori | Hoifung Poon | Javier Alvarez-Valle | Ozan Oktay | Stephanie L. Hyland
Transactions of the Association for Computational Linguistics, Volume 11

Label scarcity is a bottleneck for improving task performance in specialized domains. We propose a novel compositional transfer learning framework (DoT51) for zero-shot domain transfer. Without access to in-domain labels, DoT5 jointly learns domain knowledge (from masked language modelling of unlabelled in-domain free text) and task knowledge (from task training on more readily available general-domain data) in a multi-task manner. To improve the transferability of task training, we design a strategy named NLGU: We simultaneously train natural language generation (NLG) for in-domain label-to-data generation, which enables data augmentation for self-finetuning and natural language understanding (NLU) for label prediction. We evaluate DoT5 on the biomedical domain and the resource-lean subdomain of radiology, focusing on natural language inference, text summarization, and embedding learning. DoT5 demonstrates the effectiveness of compositional transfer learning through multi-task learning. In particular, DoT5 outperforms the current state-of-the-art in zero-shot transfer by over 7 absolute points in accuracy on RadNLI. We validate DoT5 with ablations and a case study demonstrating its ability to solve challenging NLI examples requiring in-domain expertise.

2022

pdf bib
Do ever larger octopi still amplify reporting biases? Evidence from judgments of typical colour
Fangyu Liu | Julian Eisenschlos | Jeremy Cole | Nigel Collier
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Language models (LMs) trained on raw texts have no direct access to the physical world. Gordon and Van Durme (2013) point out that LMs can thus suffer from reporting bias: texts rarely report on common facts, instead focusing on the unusual aspects of a situation. If LMs are only trained on text corpora and naively memorise local co-occurrence statistics, they thus naturally would learn a biased view of the physical world. While prior studies have repeatedly verified that LMs of smaller scales (e.g., RoBERTa, GPT-2) amplify reporting bias, it remains unknown whether such trends continue when models are scaled up. We investigate reporting bias from the perspective of colour in larger language models (LLMs) such as PaLM and GPT-3. Specifically, we query LLMs for the typical colour of objects, which is one simple type of perceptually grounded physical common sense. Surprisingly, we find that LLMs significantly outperform smaller LMs in determining an object’s typical colour and more closely track human judgments, instead of overfitting to surface patterns stored in texts. This suggests that very large models of language alone are able to overcome certain types of reporting bias that are characterized by local co-occurrences.

pdf bib
How to tackle an emerging topic? Combining strong and weak labels for Covid news NER
Aleksander Ficek | Fangyu Liu | Nigel Collier
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Being able to train Named Entity Recognition (NER) models for emerging topics is crucial for many real-world applications especially in the medical domain where new topics are continuously evolving out of the scope of existing models and datasets. For a realistic evaluation setup, we introduce a novel COVID-19 news NER dataset (COVIDNEWS-NER) and release 3000 entries of hand annotated strongly labelled sentences and 13000 auto-generated weakly labelled sentences. Besides the dataset, we propose CONTROSTER, a recipe to strategically combine weak and strong labels in improving NER in an emerging topic through transfer learning. We show the effectiveness of CONTROSTER on COVIDNEWS-NER while providing analysis on combining weak and strong labels for training. Our key findings are: (1) Using weak data to formulate an initial backbone before tuning on strong data outperforms methods trained on only strong or weak data. (2) A combination of out-of-domain and in-domain weak label training is crucial and can overcome saturation when being training on weak labels from a single source.

pdf bib
Improving Word Translation via Two-Stage Contrastive Learning
Yaoyiran Li | Fangyu Liu | Nigel Collier | Anna Korhonen | Ivan Vulić
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Word translation or bilingual lexicon induction (BLI) is a key cross-lingual task, aiming to bridge the lexical gap between different languages. In this work, we propose a robust and effective two-stage contrastive learning framework for the BLI task. At Stage C1, we propose to refine standard cross-lingual linear maps between static word embeddings (WEs) via a contrastive learning objective; we also show how to integrate it into the self-learning procedure for even more refined cross-lingual maps. In Stage C2, we conduct BLI-oriented contrastive fine-tuning of mBERT, unlocking its word translation capability. We also show that static WEs induced from the ‘C2-tuned’ mBERT complement static WEs from Stage C1. Comprehensive experiments on standard BLI datasets for diverse languages and different experimental setups demonstrate substantial gains achieved by our framework. While the BLI method from Stage C1 already yields substantial gains over all state-of-the-art BLI methods in our comparison, even stronger improvements are met with the full two-stage framework: e.g., we report gains for 112/112 BLI setups, spanning 28 language pairs.

pdf bib
Rewire-then-Probe: A Contrastive Recipe for Probing Biomedical Knowledge of Pre-trained Language Models
Zaiqiao Meng | Fangyu Liu | Ehsan Shareghi | Yixuan Su | Charlotte Collins | Nigel Collier
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Knowledge probing is crucial for understanding the knowledge transfer mechanism behind the pre-trained language models (PLMs). Despite the growing progress of probing knowledge for PLMs in the general domain, specialised areas such as the biomedical domain are vastly under-explored. To facilitate this, we release a well-curated biomedical knowledge probing benchmark, MedLAMA, constructed based on the Unified Medical Language System (UMLS) Metathesaurus. We test a wide spectrum of state-of-the-art PLMs and probing approaches on our benchmark, reaching at most 3% of acc@10. While highlighting various sources of domain-specific challenges that amount to this underwhelming performance, we illustrate that the underlying PLMs have a higher potential for probing tasks. To achieve this, we propose Contrastive-Probe, a novel self-supervised contrastive probing approach, that adjusts the underlying PLMs without using any probing data. While Contrastive-Probe pushes the acc@10 to 28%, the performance gap still remains notable. Our human expert evaluation suggests that the probing performance of our Contrastive-Probe is still under-estimated as UMLS still does not include the full spectrum of factual knowledge. We hope MedLAMA and Contrastive-Probe facilitate further developments of more suited probing techniques for this domain. Our code and dataset are publicly available at https://github.com/cambridgeltl/medlama.

pdf bib
Prix-LM: Pretraining for Multilingual Knowledge Base Construction
Wenxuan Zhou | Fangyu Liu | Ivan Vulić | Nigel Collier | Muhao Chen
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Knowledge bases (KBs) contain plenty of structured world and commonsense knowledge. As such, they often complement distributional text-based information and facilitate various downstream tasks. Since their manual construction is resource- and time-intensive, recent efforts have tried leveraging large pretrained language models (PLMs) to generate additional monolingual knowledge facts for KBs. However, such methods have not been attempted for building and enriching multilingual KBs. Besides wider application, such multilingual KBs can provide richer combined knowledge than monolingual (e.g., English) KBs. Knowledge expressed in different languages may be complementary and unequally distributed: this implies that the knowledge available in high-resource languages can be transferred to low-resource ones. To achieve this, it is crucial to represent multilingual knowledge in a shared/unified space. To this end, we propose a unified representation model, Prix-LM, for multilingual KB construction and completion. We leverage two types of knowledge, monolingual triples and cross-lingual links, extracted from existing multilingual KBs, and tune a multilingual language encoder XLM-R via a causal language modeling objective. Prix-LM integrates useful multilingual and KB-based factual knowledge into a single model. Experiments on standard entity-related tasks, such as link prediction in multiple languages, cross-lingual entity linking and bilingual lexicon induction, demonstrate its effectiveness, with gains reported over strong task-specialised baselines.

pdf bib
Fine-Grained Controllable Text Generation Using Non-Residual Prompting
Fredrik Carlsson | Joey Öhman | Fangyu Liu | Severine Verlinden | Joakim Nivre | Magnus Sahlgren
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The introduction of immensely large Causal Language Models (CLMs) has rejuvenated the interest in open-ended text generation. However, controlling the generative process for these Transformer-based models is at large an unsolved problem. Earlier work has explored either plug-and-play decoding strategies, or more powerful but blunt approaches such as prompting. There hence currently exists a trade-off between fine-grained control, and the capability for more expressive high-level instructions. To alleviate this trade-off, we propose an encoder-decoder architecture that enables intermediate text prompts at arbitrary time steps. We propose a resource-efficient method for converting a pre-trained CLM into this architecture, and demonstrate its potential on various experiments, including the novel task of contextualized word inclusion. Our method provides strong results on multiple experimental settings, proving itself to be both expressive and versatile.

pdf bib
Revisiting Parameter-Efficient Tuning: Are We Really There Yet?
Guanzheng Chen | Fangyu Liu | Zaiqiao Meng | Shangsong Liang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Parameter-Efficient Tuning (PETuning) methods have been deemed by many as the new paradigm for using pretrained language models (PLMs). By tuning just a fraction amount of parameters comparing to full model finetuning, PETuning methods claim to have achieved performance on par with or even better than finetuning. In this work, we take a step back and re-examine these PETuning methods by conducting the first comprehensive investigation into the training and evaluation of them. We found the problematic validation and testing practice in current studies, when accompanied by the instability nature of PETuning methods, has led to unreliable conclusions. When being compared under a truly fair evaluation protocol, PETuning cannot yield consistently competitive performance while finetuning remains to be the best-performing method in medium- and high-resource settings. We delve deeper into the cause of the instability and observed that the number of trainable parameters and training iterations are two main factors: reducing trainable parameters and prolonging training iterations may lead to higher stability in PETuning methods.

pdf bib
TweetNLP: Cutting-Edge Natural Language Processing for Social Media
Jose Camacho-collados | Kiamehr Rezaee | Talayeh Riahi | Asahi Ushio | Daniel Loureiro | Dimosthenis Antypas | Joanne Boisson | Luis Espinosa Anke | Fangyu Liu | Eugenio Martínez Cámara
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

In this paper we present TweetNLP, an integrated platform for Natural Language Processing (NLP) in social media. TweetNLP supports a diverse set of NLP tasks, including generic focus areas such as sentiment analysis and named entity recognition, as well as social media-specific tasks such as emoji prediction and offensive language identification. Task-specific systems are powered by reasonably-sized Transformer-based language models specialized on social media text (in particular, Twitter) which can be run without the need for dedicated hardware or cloud services. The main contributions of TweetNLP are: (1) an integrated Python library for a modern toolkit supporting social media analysis using our various task-specific models adapted to the social domain; (2) an interactive online demo for codeless experimentation using our models; and (3) a tutorial covering a wide variety of typical social media applications.

pdf bib
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning
Yixuan Su | Fangyu Liu | Zaiqiao Meng | Tian Lan | Lei Shu | Ehsan Shareghi | Nigel Collier
Findings of the Association for Computational Linguistics: NAACL 2022

Masked language models (MLMs) such as BERT have revolutionized the field of Natural Language Understanding in the past few years. However, existing pre-trained MLMs often output an anisotropic distribution of token representations that occupies a narrow subset of the entire representation space. Such token representations are not ideal, especially for tasks that demand discriminative semantic meanings of distinct tokens. In this work, we propose TaCL (Token-aware Contrastive Learning), a novel continual pre-training approach that encourages BERT to learn an isotropic and discriminative distribution of token representations. TaCL is fully unsupervised and requires no additional data. We extensively test our approach on a wide range of English and Chinese benchmarks. The results show that TaCL brings consistent and notable improvements over the original BERT model. Furthermore, we conduct detailed analysis to reveal the merits and inner-workings of our approach.

pdf bib
Improving Bilingual Lexicon Induction with Cross-Encoder Reranking
Yaoyiran Li | Fangyu Liu | Ivan Vulić | Anna Korhonen
Findings of the Association for Computational Linguistics: EMNLP 2022

Bilingual lexicon induction (BLI) with limited bilingual supervision is a crucial yet challenging task in multilingual NLP. Current state-of-the-art BLI methods rely on the induction of cross-lingual word embeddings (CLWEs) to capture cross-lingual word similarities; such CLWEs are obtained <b>1)</b> via traditional static models (e.g., VecMap), or <b>2)</b> by extracting type-level CLWEs from multilingual pretrained language models (mPLMs), or <b>3)</b> through combining the former two options. In this work, we propose a novel semi-supervised <i>post-hoc</i> reranking method termed <b>BLICEr</b> (<b>BLI</b> with <b>C</b>ross-<b>E</b>ncoder <b>R</b>eranking), applicable to any precalculated CLWE space, which improves their BLI capability. The key idea is to ‘extract’ cross-lingual lexical knowledge from mPLMs, and then combine it with the original CLWEs. This crucial step is done via <b>1)</b> creating a word similarity dataset, comprising positive word pairs (i.e., true translations) and hard negative pairs induced from the original CLWE space, and then <b>2)</b> fine-tuning an mPLM (e.g., mBERT or XLM-R) in a cross-encoder manner to predict the similarity scores. At inference, we <b>3)</b> combine the similarity score from the original CLWE space with the score from the BLI-tuned cross-encoder. BLICEr establishes new state-of-the-art results on two standard BLI benchmarks spanning a wide spectrum of diverse languages: it substantially outperforms a series of strong baselines across the board. We also validate the robustness of BLICEr with different CLWEs.

pdf bib
Sharpness-Aware Minimization with Dynamic Reweighting
Wenxuan Zhou | Fangyu Liu | Huan Zhang | Muhao Chen
Findings of the Association for Computational Linguistics: EMNLP 2022

Deep neural networks are often overparameterized and may not easily achieve model generalization. Adversarial training has shown effectiveness in improving generalization by regularizing the change of loss on top of adversarially chosen perturbations. The recently proposed sharpness-aware minimization (SAM) algorithm conducts adversarial weight perturbation, encouraging the model to converge to a flat minima. SAM finds a common adversarial weight perturbation per-batch. Although per-instance adversarial weight perturbations are stronger adversaries and can potentially lead to better generalization performance, their computational cost is very high and thus it is impossible to use per-instance perturbations efficiently in SAM. In this paper, we tackle this efficiency bottleneck and propose sharpness-aware minimization with dynamic reweighting (delta-SAM). Our theoretical analysis motivates that it is possible to approach the stronger, per-instance adversarial weight perturbations using reweighted per-batch weight perturbations. delta-SAM dynamically reweights perturbation within each batch according to the theoretically principled weighting factors, serving as a good approximation to per-instance perturbation. Experiments on various natural language understanding tasks demonstrate the effectiveness of delta-SAM.

pdf bib
Proceedings of the Workshop on Multilingual Multimodal Learning
Emanuele Bugliarello | Kai-Wei Cheng | Desmond Elliott | Spandana Gella | Aishwarya Kamath | Liunian Harold Li | Fangyu Liu | Jonas Pfeiffer | Edoardo Maria Ponti | Krishna Srinivasan | Ivan Vulić | Yinfei Yang | Da Yin
Proceedings of the Workshop on Multilingual Multimodal Learning

2021

pdf bib
Learning Domain-Specialised Representations for Cross-Lingual Biomedical Entity Linking
Fangyu Liu | Ivan Vulić | Anna Korhonen | Nigel Collier
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Injecting external domain-specific knowledge (e.g., UMLS) into pretrained language models (LMs) advances their capability to handle specialised in-domain tasks such as biomedical entity linking (BEL). However, such abundant expert knowledge is available only for a handful of languages (e.g., English). In this work, by proposing a novel cross-lingual biomedical entity linking task (XL-BEL) and establishing a new XL-BEL benchmark spanning 10 typologically diverse languages, we first investigate the ability of standard knowledge-agnostic as well as knowledge-enhanced monolingual and multilingual LMs beyond the standard monolingual English BEL task. The scores indicate large gaps to English performance. We then address the challenge of transferring domain-specific knowledge in resource-rich languages to resource-poor ones. To this end, we propose and evaluate a series of cross-lingual transfer methods for the XL-BEL task, and demonstrate that general-domain bitext helps propagate the available English knowledge to languages with little to no in-domain data. Remarkably, we show that our proposed domain-specific transfer methods yield consistent gains across all target languages, sometimes up to 20 Precision@1 points, without any in-domain knowledge in the target language, and without any in-domain parallel data.

pdf bib
MirrorWiC: On Eliciting Word-in-Context Representations from Pretrained Language Models
Qianchu Liu | Fangyu Liu | Nigel Collier | Anna Korhonen | Ivan Vulić
Proceedings of the 25th Conference on Computational Natural Language Learning

Recent work indicated that pretrained language models (PLMs) such as BERT and RoBERTa can be transformed into effective sentence and word encoders even via simple self-supervised techniques. Inspired by this line of work, in this paper we propose a fully unsupervised approach to improving word-in-context (WiC) representations in PLMs, achieved via a simple and efficient WiC-targeted fine-tuning procedure: MirrorWiC. The proposed method leverages only raw texts sampled from Wikipedia, assuming no sense-annotated data, and learns context-aware word representations within a standard contrastive learning setup. We experiment with a series of standard and comprehensive WiC benchmarks across multiple languages. Our proposed fully unsupervised MirrorWiC models obtain substantial gains over off-the-shelf PLMs across all monolingual, multilingual and cross-lingual setups. Moreover, on some standard WiC benchmarks, MirrorWiC is even on-par with supervised models fine-tuned with in-task data and sense labels.

pdf bib
Contrastive Out-of-Distribution Detection for Pretrained Transformers
Wenxuan Zhou | Fangyu Liu | Muhao Chen
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Pretrained Transformers achieve remarkable performance when training and test data are from the same distribution. However, in real-world scenarios, the model often faces out-of-distribution (OOD) instances that can cause severe semantic shift problems at inference time. Therefore, in practice, a reliable model should identify such instances, and then either reject them during inference or pass them over to models that handle another distribution. In this paper, we develop an unsupervised OOD detection method, in which only the in-distribution (ID) data are used in training. We propose to fine-tune the Transformers with a contrastive loss, which improves the compactness of representations, such that OOD instances can be better differentiated from ID ones. These OOD instances can then be accurately detected using the Mahalanobis distance in the model’s penultimate layer. We experiment with comprehensive settings and achieve near-perfect OOD detection performance, outperforming baselines drastically. We further investigate the rationales behind the improvement, finding that more compact representations through margin-based contrastive learning bring the improvement. We release our code to the community for future research.

pdf bib
Fast, Effective, and Self-Supervised: Transforming Masked Language Models into Universal Lexical and Sentence Encoders
Fangyu Liu | Ivan Vulić | Anna Korhonen | Nigel Collier
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Previous work has indicated that pretrained Masked Language Models (MLMs) are not effective as universal lexical and sentence encoders off-the-shelf, i.e., without further task-specific fine-tuning on NLI, sentence similarity, or paraphrasing tasks using annotated task data. In this work, we demonstrate that it is possible to turn MLMs into effective lexical and sentence encoders even without any additional data, relying simply on self-supervision. We propose an extremely simple, fast, and effective contrastive learning technique, termed Mirror-BERT, which converts MLMs (e.g., BERT and RoBERTa) into such encoders in 20-30 seconds with no access to additional external knowledge. Mirror-BERT relies on identical and slightly modified string pairs as positive (i.e., synonymous) fine-tuning examples, and aims to maximise their similarity during “identity fine-tuning”. We report huge gains over off-the-shelf MLMs with Mirror-BERT both in lexical-level and in sentence-level tasks, across different domains and different languages. Notably, in sentence similarity (STS) and question-answer entailment (QNLI) tasks, our self-supervised Mirror-BERT model even matches the performance of the Sentence-BERT models from prior work which rely on annotated task data. Finally, we delve deeper into the inner workings of MLMs, and suggest some evidence on why this simple Mirror-BERT fine-tuning approach can yield effective universal lexical and sentence encoders.

pdf bib
Mixture-of-Partitions: Infusing Large Biomedical Knowledge Graphs into BERT
Zaiqiao Meng | Fangyu Liu | Thomas Clark | Ehsan Shareghi | Nigel Collier
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Infusing factual knowledge into pre-trained models is fundamental for many knowledge-intensive tasks. In this paper, we proposed Mixture-of-Partitions (MoP), an infusion approach that can handle a very large knowledge graph (KG) by partitioning it into smaller sub-graphs and infusing their specific knowledge into various BERT models using lightweight adapters. To leverage the overall factual knowledge for a target task, these sub-graph adapters are further fine-tuned along with the underlying BERT through a mixture layer. We evaluate our MoP with three biomedical BERTs (SciBERT, BioBERT, PubmedBERT) on six downstream tasks (inc. NLI, QA, Classification), and the results show that our MoP consistently enhances the underlying BERTs in task performance, and achieves new SOTA performances on five evaluated datasets.

pdf bib
Visually Grounded Reasoning across Languages and Cultures
Fangyu Liu | Emanuele Bugliarello | Edoardo Maria Ponti | Siva Reddy | Nigel Collier | Desmond Elliott
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

The design of widespread vision-and-language datasets and pre-trained encoders directly adopts, or draws inspiration from, the concepts and images of ImageNet. While one can hardly overestimate how much this benchmark contributed to progress in computer vision, it is mostly derived from lexical databases and image queries in English, resulting in source material with a North American or Western European bias. Therefore, we devise a new protocol to construct an ImageNet-style hierarchy representative of more languages and cultures. In particular, we let the selection of both concepts and images be entirely driven by native speakers, rather than scraping them automatically. Specifically, we focus on a typologically diverse set of languages, namely, Indonesian, Mandarin Chinese, Swahili, Tamil, and Turkish. On top of the concepts and images obtained through this new protocol, we create a multilingual dataset for Multicultural Reasoning over Vision and Language (MaRVL) by eliciting statements from native speaker annotators about pairs of images. The task consists of discriminating whether each grounded statement is true or false. We establish a series of baselines using state-of-the-art models and find that their cross-lingual transfer performance lags dramatically behind supervised performance in English. These results invite us to reassess the robustness and accuracy of current state-of-the-art models beyond a narrow domain, but also open up new exciting challenges for the development of truly multilingual and multicultural systems.

pdf bib
Self-Alignment Pretraining for Biomedical Entity Representations
Fangyu Liu | Ehsan Shareghi | Zaiqiao Meng | Marco Basaldella | Nigel Collier
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Despite the widespread success of self-supervised learning via masked language models (MLM), accurately capturing fine-grained semantic relationships in the biomedical domain remains a challenge. This is of paramount importance for entity-level tasks such as entity linking where the ability to model entity relations (especially synonymy) is pivotal. To address this challenge, we propose SapBERT, a pretraining scheme that self-aligns the representation space of biomedical entities. We design a scalable metric learning framework that can leverage UMLS, a massive collection of biomedical ontologies with 4M+ concepts. In contrast with previous pipeline-based hybrid systems, SapBERT offers an elegant one-model-for-all solution to the problem of medical entity linking (MEL), achieving a new state-of-the-art (SOTA) on six MEL benchmarking datasets. In the scientific domain, we achieve SOTA even without task-specific supervision. With substantial improvement over various domain-specific pretrained MLMs such as BioBERT, SciBERTand and PubMedBERT, our pretraining scheme proves to be both effective and robust.

pdf bib
Integrating Transformers and Knowledge Graphs for Twitter Stance Detection
Thomas Clark | Costanza Conforti | Fangyu Liu | Zaiqiao Meng | Ehsan Shareghi | Nigel Collier
Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021)

Stance detection (SD) entails classifying the sentiment of a text towards a given target, and is a relevant sub-task for opinion mining and social media analysis. Recent works have explored knowledge infusion supplementing the linguistic competence and latent knowledge of large pre-trained language models with structured knowledge graphs (KGs), yet few works have applied such methods to the SD task. In this work, we first perform stance-relevant knowledge probing on Transformers-based pre-trained models in a zero-shot setting, showing these models’ latent real-world knowledge about SD targets and their sensitivity to context. We then train and evaluate new knowledge-enriched stance detection models on two Twitter stance datasets, achieving state-of-the-art performance on both.

2020

pdf bib
COMETA: A Corpus for Medical Entity Linking in the Social Media
Marco Basaldella | Fangyu Liu | Ehsan Shareghi | Nigel Collier
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Whilst there has been growing progress in Entity Linking (EL) for general language, existing datasets fail to address the complex nature of health terminology in layman’s language. Meanwhile, there is a growing need for applications that can understand the public’s voice in the health domain. To address this we introduce a new corpus called COMETA, consisting of 20k English biomedical entity mentions from Reddit expert-annotated with links to SNOMED CT, a widely-used medical knowledge graph. Our corpus satisfies a combination of desirable properties, from scale and coverage to diversity and quality, that to the best of our knowledge has not been met by any of the existing resources in the field. Through benchmark experiments on 20 EL baselines from string- to neural-based models we shed light on the ability of these systems to perform complex inference on entities and concepts under 2 challenging evaluation scenarios. Our experimental results on COMETA illustrate that no golden bullet exists and even the best mainstream techniques still have a significant performance gap to fill, while the best solution relies on combining different views of data.

2019

pdf bib
A Strong and Robust Baseline for Text-Image Matching
Fangyu Liu | Rongtian Ye
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop

We review the current schemes of text-image matching models and propose improvements for both training and inference. First, we empirically show limitations of two popular loss (sum and max-margin loss) widely used in training text-image embeddings and propose a trade-off: a kNN-margin loss which 1) utilizes information from hard negatives and 2) is robust to noise as all K-most hardest samples are taken into account, tolerating pseudo negatives and outliers. Second, we advocate the use of Inverted Softmax (IS) and Cross-modal Local Scaling (CSLS) during inference to mitigate the so-called hubness problem in high-dimensional embedding space, enhancing scores of all metrics by a large margin.
Search
Fix data