This study explores the proactive ability of LLMs to seek user support. We propose metrics to evaluate the trade-off between performance improvements and user burden, and investigate whether LLMs can determine when to request help under varying information availability. Our experiments show that without external feedback, many LLMs struggle to recognize their need for user support. The findings highlight the importance of external signals and provide insights for future research on improving support-seeking strategies. Source code: https://github.com/appier-research/i-need-help
Using large language models (LLMs) for automatic evaluation has become an important evaluation method in NLP research. However, it is unclear whether these LLM-based evaluators can be effectively applied in real-world classrooms to assess student assignments. This empirical report shares how we use GPT-4 as an automatic assignment evaluator in a university course with over 1000 students. Based on student responses, we found that LLM-based assignment evaluators are generally acceptable to students when they have free access to these tools. However, students also noted that the LLM sometimes fails to adhere to the evaluation instructions, resulting in unreasonable assessments. Additionally, we observed that students can easily manipulate the LLM to output specific strings, allowing them to achieve high scores without meeting the assignment rubric. Based on student feedback and our experience, we offer several recommendations for effectively integrating LLMs into future classroom evaluations. Our observation also highlights potential directions for improving LLM-based evaluators, including their instruction-following ability and vulnerability to prompt hacking.
Synthetic data is widely used in speech recognition due to the availability of text-to-speech models, which facilitate adapting models to previously unseen text domains. However, existing methods suffer in performance when they fine-tune an automatic speech recognition (ASR) model on synthetic data as they suffer from the distributional shift commonly referred to as the synthetic-to-real gap. In this paper, we find that task arithmetic is effective at mitigating this gap. Our proposed method, SYN2REAL task vector, shows an average improvement of 10.03% improvement in word error rate over baselines on the SLURP dataset. Additionally, we show that an average of SYN2REAL task vectors, when we have real speeches from multiple different domains, can further adapt the original ASR model to perform better on the target text domain.
Reinforcement learning from human feedback (RLHF) is a popular strategy for aligning large language models (LLMs) with desired behaviors. Reward modeling is a crucial step in RLHF. However, collecting paired preference data for training reward models is often costly and time-consuming, especially for domain-specific preferences requiring expert annotation. To address this challenge, we propose the **Do**main knowled**ge** merged **R**eward **M**odel (**DogeRM**), a novel framework that integrates domain-specific knowledge into a general reward model by model merging. The experiments demonstrate that DogeRM enhances performance across different benchmarks and provide a detailed analysis showcasing the effects of model merging, showing the great potential of facilitating model alignment.
Deep Learning-based end-to-end Automatic Speech Recognition (ASR) has made significant strides but still struggles with performance on out-of-domain samples due to domain shifts in real-world scenarios. Test-Time Adaptation (TTA) methods address this issue by adapting models using test samples at inference time. However, current ASR TTA methods have largely focused on non-continual TTA, which limits cross-sample knowledge learning compared to continual TTA. In this work, we first propose a Fast-slow TTA framework for ASR that leverages the advantage of continual and non-continual TTA. Following this framework, we introduce Dynamic SUTA (DSUTA), an entropy-minimization-based continual TTA method for ASR. To enhance DSUTA’s robustness for time-varying data, we design a dynamic reset strategy to automatically detect domain shifts and reset the model, making it more effective at handling multi-domain data. Our method demonstrates superior performance on various noisy ASR datasets, outperforming both non-continual and continual TTA baselines while maintaining robustness to domain changes without requiring domain boundary information.
Structured generation, the process of producing content in standardized formats like JSON and XML, is widely utilized in real-world applications to extract key output information from large language models (LLMs).This study investigates whether such constraints on generation space impact LLMs’ abilities, including reasoning and domain knowledge comprehension. Specifically, we evaluate LLMs’ performance when restricted to adhere to structured formats versus generating free-form responses across various common tasks. Surprisingly, we observe a significant decline in LLMs’ reasoning abilities under format restrictions. Furthermore, we find that stricter format constraints generally lead to greater performance degradation in reasoning tasks.
Long-form generations from large language models (LLMs) contain a mix of factual and non-factual claims, making evaluating factuality difficult.Prior works evaluate the factuality of a long paragraph by decomposing it into multiple facts, verifying those facts independently, and aggregating the results.Such methods assume that combining factual claims forms a factual paragraph.The above assumption can be violated: we show that strong open-source models like Llama-chat can generate paragraphs that contain verifiable facts, but the facts are combined into a non-factual paragraph due to entity ambiguity.We further reveal that existing factuality metrics, including FActScore and citation recall, cannot properly evaluate these non-factual paragraphs and overestimate their factuality.To address this, we introduce an enhanced metric, **D-FActScore**, specifically designed for content with ambiguous entities.We evaluate the D-FActScores of people biographies generated by retrieval-augmented LLMs.We show that D-FActScore can better assess the factuality of paragraphs with entity ambiguity than FActScore.We also find that four widely used open-source LLMs tend to mix information of distinct entities to form non-factual paragraphs, making their D-FActScore much lower than FActScore by over 10%.
The sound codec’s dual roles in minimizing data transmission latency and serving as tokenizers underscore its critical importance.Recent years have witnessed significant developments in codec models.The ideal sound codec should preserve content, paralinguistics, speakers, and audio information.However, the question of which codec achieves optimal sound information preservation remains unanswered, as in different papers, models are evaluated on their selected experimental settings.This study introduces Codec-SUPERB, an acronym for Codec sound processing Universal PERformance Benchmark.It is an ecosystem designed to assess codec models across representative sound applications and signal-level metrics rooted in sound domain knowledge.Codec-SUPERB simplifies result sharing through an online leaderboard, promoting collaboration within a community-driven benchmark database, thereby stimulating new development cycles for codecs.Furthermore, we undertake an in-depth analysis to offer insights into codec models from both application and signal perspectives, diverging from previous codec papers mainly concentrating on signal-level comparisons.Finally, we will release codes, the leaderboard, and data to accelerate progress within the community.
The Spoken Language Understanding Evaluation (SLUE) suite of benchmark tasks was recently introduced to address the need for openresources and benchmarking of complex spoken language understanding (SLU) tasks, including both classification and sequence generation tasks, on natural speech. The benchmark has demonstrated preliminary success in using pre-trained speech foundation models (SFM) for these SLU tasks. However, the community still lacks a fine-grained understanding of the comparative utility of different SFMs. Inspired by this, we ask: which SFMs offer the most benefits for these complex SLU tasks, and what is the most effective approach for incorporating these SFMs? To answer this, we perform an extensive evaluation of multiple supervised and self-supervised SFMs using several evaluation protocols: (i) frozen SFMs with a lightweight prediction head, (ii) frozen SFMs with a complex prediction head, and (iii) fine-tuned SFMs with a lightweight prediction head. Although the supervised SFMs are pre-trained on much more speech recognition data (with labels), they do not always outperform self-supervised SFMs; the latter tend to perform at least as well as, and sometimes better than, supervised SFMs, especially on the sequence generation tasks in SLUE. While there is no universally optimal way of incorporating SFMs, the complex prediction head gives the best performance for most tasks, although it increases the inference time. We also introduce an open-source toolkit and performance leaderboard, SLUE-PERB, for these tasks and modeling strategies.
Emphasis is a crucial component in human communication, which indicates speaker’s intention and implication beyond pure text in dialogue. While Large Language Models (LLMs) have revolutionized natural language processing, their ability to understand emphasis in dialogue remains uncertain. This paper introduces Emphasized-Talk, a benchmark dataset with annotated dialogue samples capturing the implications of emphasis. We evaluate various LLMs, both open-source and commercial, to assess their performance in understanding and generating emphasis. Additionally, we propose an automatic evaluation pipeline using GPT-4, which achieve high correlation with human scoring. Our findings reveal that although commercial LLMs generally perform better, there is still significant room for improvement in comprehending emphasized sentences.
Large language models (LLMs) equipped with chain-of-thoughts (CoT) prompting have shown significant multi-step reasoning capabilities in factual content like mathematics, commonsense, and logic. However, their performance in narrative reasoning, which demands greater abstraction capabilities, remains unexplored. This study utilizes tropes in movie synopses to assess the abstract reasoning abilities of state-of-the-art LLMs and uncovers their low performance. We introduce a trope-wise querying approach to address these challenges and boost the F1 score by 11.8 points. Moreover, while prior studies suggest that CoT enhances multi-step reasoning, this study shows CoT can cause hallucinations in narrative content, reducing GPT-4’s performance. We also introduce an Adversarial Injection method to embed trope-related text tokens into movie synopses without explicit tropes, revealing CoT’s heightened sensitivity to such injections. Our comprehensive analysis provides insights for future research directions.
Parameter-efficient (PE) methods (like Prompts or Adapters) for adapting pre-trained language models (PLM) to downstream tasks have been popular recently. However, hindrances still prevent these methods from reaching their full potential. For example, two significant challenges are few-shot adaptation and cross-task generalization. To tackle these issues, we propose a general PE priming framework to enhance and explore the few-shot adaptation and generalization ability of PE methods. In this framework, PLMs are primed with PE methods for rapidly adapting to various target tasks. To evaluate the generalization ability of these PE methods, we conduct experiments on a few-shot cross-domain benchmark containing 160 diverse NLP tasks. Our experiment not only reveals the best priming strategy but also verifies that priming facilitates the adaptation to target tasks.
Large language models (LLMs) answering questions with retrieval-augmented generation (RAG) can face conflicting evidence in the retrieved documents. While prior works study how textual features like perplexity and readability influence the persuasiveness of evidence, humans consider more than textual content when evaluating conflicting information on the web. In this paper, we focus on the following question: When two webpages contain conflicting information to answer a question, does non-textual information affect the LLM’s reasoning and answer? We consider three types of non-textual information: (1) the webpage’s publication time, (2) the source where the webpage is from, and (3) the appearance of the webpage. We give the LLM a Yes/No question and two conflicting webpages that support yes and no, respectively. We exchange the non-textual information in the two webpages to see if the LLMs tend to use the information from a newer, more reliable, and more visually appealing webpage. We find that changing the publication time of the webpage can change the answer for most LLMs, but changing the webpage’s source merely affects the LLM’s answer. We also reveal that the webpage’s appearance has a strong causal effect on Claude-3’s answers.The codes and datasets used in the paper are available at https://github.com/d223302/rag-metadata.
Large language models (LLMs) can solve problems step-by-step.While this chain-of-thought (CoT) reasoning boosts LLMs’ performance, it is unclear if LLMs know when to use CoT and whether those CoT are always necessary to answer the question. This paper shows that LLMs tend to generate redundant calculations and reasoning on a manually constructed math QA dataset, GSM8K-Zero.GSM8K-Zero is constructed such that the questions can be answered without any calculations, but LLMs, including Llama-2 models and Claude-2, tend to generate lengthy and unnecessary calculations to answer the questions.We also conduct experiments to explain why LLMs generate redundant calculations and reasonings.
In spoken dialogue, even if two current turns are the same sentence, their responses might still differ when they are spoken in different styles. The spoken styles, containing paralinguistic and prosodic information, mark the most significant difference between text and speech modality. When using text-only LLMs to model spoken dialogue, text-only LLMs cannot give different responses based on the speaking style of the current turn. In this paper, we focus on enabling LLMs to listen to the speaking styles and respond properly. Our goal is to teach the LLM that “even if the sentences are identical if they are spoken in different styles, their corresponding responses might be different”. Since there is no suitable dataset for achieving this goal, we collect a speech-to-speech dataset, StyleTalk, with the following desired characteristics: when two current speeches have the same content but are spoken in different styles, their responses will be different. To teach LLMs to understand and respond properly to the speaking styles, we propose the Spoken-LLM framework that can model the linguistic content and the speaking styles. We train Spoken-LLM using the StyleTalk dataset and devise a two-stage training pipeline to help the Spoken-LLM better learn the speaking styles. Based on extensive experiments, we show that Spoken-LLM outperforms text-only baselines and prior speech LLMs methods.
Recently, the development of open-source large language models (LLMs) has advanced rapidly. Nevertheless, due to data constraints, the capabilities of most open-source LLMs are primarily focused on English. To address this issue, we introduce the concept of chat vector to equip pre-trained language models with instruction following and human value alignment via simple model arithmetic. The chat vector is derived by subtracting the weights of a pre-trained base model (e.g. LLaMA2) from those of its corresponding chat model (e.g. LLaMA2-chat). By simply adding the chat vector to a continual pre-trained model’s weights, we can endow the model with chat capabilities in new languages without the need for further training.Our empirical studies demonstrate the superior efficacy of the chat vector from three different aspects: instruction following, toxicity mitigation, and multi-turn dialogue. Moreover, to showcase the adaptability of our approach, we extend our experiments to encompass various languages, base models, and chat vectors. The results underscore the chat vector’s simplicity, effectiveness, and wide applicability, making it a compelling solution for efficiently enabling conversational capabilities in pre-trained language models. Our code is available at https://github.com/aqweteddy/ChatVector.
Spoken language understanding (SLU) tasks have been studied for many decades in the speech research community, but have not received as much attention as lower-level tasks like speech and speaker recognition. In this work, we introduce several new annotated SLU benchmark tasks based on freely available speech data, which complement existing benchmarks and address gaps in the SLU evaluation landscape. We contribute four tasks: question answering and summarization involve inference over longer speech sequences; named entity localization addresses the speech-specific task of locating the targeted content in the signal; dialog act classification identifies the function of a given speech utterance. In order to facilitate the development of SLU models that leverage the success of pre-trained speech representations, we will release a new benchmark suite, including for each task (i) curated annotations for a relatively small fine-tuning set, (ii) reproducible pipeline (speech recognizer + text model) and end-to-end baseline models and evaluation metrics, (iii) baseline model performance in various types of systems for easy comparisons. We present the details of data collection and annotation and the performance of the baseline models. We also analyze the sensitivity of pipeline models’ performance to the speech recognition accuracy, using more than 20 publicly availablespeech recognition models.
Recent studies find existing self-supervised speech encoders contain primarily acoustic rather than semantic information. As a result, pipelined supervised automatic speech recognition (ASR) to large language model (LLM) systems achieve state-of-the-art results on semantic spoken language tasks by utilizing rich semantic representations from the LLM. These systems come at the cost of labeled audio transcriptions, which is expensive and time-consuming to obtain. We propose a task-agnostic unsupervised way of incorporating semantic information from LLMs into self-supervised speech encoders without labeled audio transcriptions. By introducing semantics, we improve existing speech encoder spoken language understanding (SLU) performance by over 5% on intent classification (IC), with modest gains in named entity resolution (NER) and slot filling (SF), and spoken question answering (SQA) FF1 score by over 2%. Our approach, which uses no ASR data, achieves similar performance as methods trained on over 100 hours of labeled audio transcripts, demonstrating the feasibility of unsupervised semantic augmentations to existing speech encoders.
Human evaluation is indispensable and inevitable for assessing the quality of texts generated by machine learning models or written by humans. However, human evaluation is very difficult to reproduce and its quality is notoriously unstable, hindering fair comparisons among different natural language processing (NLP) models and algorithms. Recently, large language models (LLMs) have demonstrated exceptional performance on unseen tasks when only the task instructions are provided. In this paper, we explore if such an ability of the LLMs can be used as an alternative to human evaluation. We present the LLMs with the exact same instructions, samples to be evaluated, and questions used to conduct human evaluation, and then ask the LLMs to generate responses to those questions; we dub this LLM evaluation. We use human evaluation and LLM evaluation to evaluate the texts in two NLP tasks: open-ended story generation and adversarial attacks. We show that the result of LLM evaluation is consistent with the results obtained by expert human evaluation: the texts rated higher by human experts are also rated higher by the LLMs.We also find that the results of LLM evaluation are stable over different formatting of the task instructions and the sampling algorithm used to generate the answer. We are the first to show the potential of using LLMs to assess the quality of texts and discuss the limitations and ethical considerations of LLM evaluation.
In this paper, we explore the following question: Are synonym substitution attacks really synonym substitution attacks (SSAs)?We approach this question by examining how SSAs replace words in the original sentence and show that there are still unresolved obstacles that make current SSAs generate invalid adversarial samples. We reveal that four widely used word substitution methods generate a large fraction of invalid substitution words that are ungrammatical or do not preserve the original sentence’s semantics. Next, we show that the semantic and grammatical constraints used in SSAs for detecting invalid word replacements are highly insufficient in detecting invalid adversarial samples.
Using large language models (LLMs) to evaluate text quality has recently gained popularity. Some existing prior works explore the idea of using LLMs for evaluation, while they differ in some details of the evaluation process. In this paper, we analyze *LLM evaluation* and *G-Eval*, and we discuss how those details in the evaluation process change how well the ratings given by LLMs correlate with human ratings. We find that the auto Chain-of-Thought (CoT) used in G-Eval does not always make G-Eval more aligned with human ratings. We also show that forcing the LLM to output only a numeric rating, as in G-Eval, is suboptimal. Last, we reveal that asking the LLM to explain its own ratings consistently improves the correlation between the ChatGPT and human ratings and pushes state-of-the-art (SoTA) correlations on two meta-evaluation datasets.
With the power of large pretrained language models, various research works have integrated knowledge into dialogue systems. The traditional techniques treat knowledge as part of the input sequence for the dialogue system, prepending a set of knowledge statements in front of dialogue history. However, such a mechanism forces knowledge sets to be concatenated in an ordered manner, making models implicitly pay imbalanced attention to the sets during training. In this paper, we first investigate how the order of the knowledge set can influence autoregressive dialogue systems’ responses. We conduct experiments on two commonly used dialogue datasets with two types of transformer-based models and find that models view the input knowledge unequally. To this end, we propose a simple and novel technique to alleviate the order effect by modifying the position embeddings of knowledge input in these models. With the proposed position embedding method, the experimental results show that each knowledge statement is uniformly considered to generate responses.
Deep learning has been the mainstream technique in the natural language processing (NLP) area. However, deep learning requires many labeled data and is less generalizable across domains. Meta-learning is an arising field in machine learning. It studies approaches to learning better learning algorithms and aims to improve algorithms in various aspects, including data efficiency and generalizability. The efficacy of meta-learning has been shown in many NLP tasks, but there is no systematic survey of these approaches in NLP, which hinders more researchers from joining the field. Our goal with this survey paper is to offer researchers pointers to relevant meta-learning works in NLP and attract more attention from the NLP community to drive future innovation. This paper first introduces the general concepts of meta-learning and the common approaches. Then we summarize task construction settings, applications of meta-learning for various NLP problems and review the development of meta-learning in the NLP community.
There is a trend in the machine learning community to adopt self-supervised approaches to pre-train deep networks. Self-supervised representation learning (SSL) utilizes proxy supervised learning tasks, for example, distinguishing parts of the input signal from distractors, or generating masked input segments conditioned on the unmasked ones, to obtain training data from unlabeled corpora. BERT and GPT in NLP and SimCLR and BYOL in CV are famous examples in this direction. These approaches make it possible to use a tremendous amount of unlabeled data available on the web to train large networks and solve complicated tasks. Thus, SSL has the potential to scale up current machine learning technologies, especially for low-resourced, under-represented use cases, and democratize the technologies. Recently self-supervised approaches for speech processing are also gaining popularity. There are several workshops in relevant topics hosted at ICML 2020 (https://icml-sas.gitlab.io/), NeurIPS 2020 (https://neurips-sas-2020.github.io/), and AAAI 2022 (https://aaai-sas-2022.github.io/). However, there is no previous tutorial about a similar topic based on the authors’ best knowledge. Due to the growing popularity of SSL, and the shared mission of the areas in bringing speech and language technologies to more use cases with better quality and scaling the technologies for under-represented languages, we propose this tutorial to systematically survey the latest SSL techniques, tools, datasets, and performance achievement in speech processing. The proposed tutorial is highly relevant to the special theme of ACL about language diversity. One of the main focuses of the tutorial is leveraging SSL to reduce the dependence of speech technologies on labeled data, and to scale up the technologies especially for under-represented languages and use cases.
Transfer learning has proven to be crucial in advancing the state of speech and natural language processing research in recent years. In speech, a model pre-trained by self-supervised learning transfers remarkably well on multiple tasks. However, the lack of a consistent evaluation methodology is limiting towards a holistic understanding of the efficacy of such models. SUPERB was a step towards introducing a common benchmark to evaluate pre-trained models across various speech tasks. In this paper, we introduce SUPERB-SG, a new benchmark focusing on evaluating the semantic and generative capabilities of pre-trained models by increasing task diversity and difficulty over SUPERB. We use a lightweight methodology to test the robustness of representations learned by pre-trained models under shifts in data domain and quality across different types of tasks. It entails freezing pre-trained model parameters, only using simple task-specific trainable heads. The goal is to be inclusive of all researchers, and encourage efficient use of computational resources. We also show that the task diversity of SUPERB-SG coupled with limited task supervision is an effective recipe for evaluating the generalizability of model representation.
Transformer-based models are widely used in natural language understanding (NLU) tasks, and multimodal transformers have been effective in visual-language tasks. This study explores distilling visual information from pretrained multimodal transformers to pretrained language encoders. Our framework is inspired by cross-modal encoders’ success in visual-language tasks while we alter the learning objective to cater to the language-heavy characteristics of NLU. After training with a small number of extra adapting steps and finetuned, the proposed XDBERT (cross-modal distilled BERT) outperforms pretrained-BERT in general language understanding evaluation (GLUE), situations with adversarial generations (SWAG) benchmarks, and readability benchmarks. We analyze the performance of XDBERT on GLUE to show that the improvement is likely visually grounded.
Transformer-based pre-trained models with millions of parameters require large storage. Recent approaches tackle this shortcoming by training adapters, but these approaches still require a relatively large number of parameters. In this study, AdapterBias, a surprisingly simple yet effective adapter architecture, is proposed. AdapterBias adds a token-dependent shift to the hidden output of transformer layers to adapt to downstream tasks with only a vector and a linear layer. Extensive experiments are conducted to demonstrate the effectiveness of AdapterBias. The experiments show that our proposed method can dramatically reduce the trainable parameters compared to the previous works with a minimal decrease in task performances compared with fine-tuned pre-trained models. We further find that AdapterBias automatically learns to assign more significant representation shifts to the tokens related to the task in consideration.
Pre-trained language models (PLMs) are language models that are pre-trained on large-scaled corpora in a self-supervised fashion. These PLMs have fundamentally changed the natural language processing community in the past few years. In this tutorial, we aim to provide a broad and comprehensive introduction from two perspectives: why those PLMs work, and how to use them in NLP tasks. The first part of the tutorial shows some insightful analysis on PLMs that partially explain their exceptional downstream performance. The second part first focuses on emerging pre-training methods that enable PLMs to perform diverse downstream tasks and then illustrates how one can apply those PLMs to downstream tasks under different circumstances. These circumstances include fine-tuning PLMs when under data scarcity, and using PLMs with parameter efficiency. We believe that attendees of different backgrounds would find this tutorial informative and useful.
Simultaneous machine translation (SimulMT) speeds up the translation process by starting to translate before the source sentence is completely available. It is difficult due to limited context and word order difference between languages. Existing methods increase latency or introduce adaptive read-write policies for SimulMT models to handle local reordering and improve translation quality. However, the long-distance reordering would make the SimulMT models learn translation mistakenly. Specifically, the model may be forced to predict target tokens when the corresponding source tokens have not been read. This leads to aggressive anticipation during inference, resulting in the hallucination phenomenon. To mitigate this problem, we propose a new framework that decompose the translation process into the monotonic translation step and the reordering step, and we model the latter by the auxiliary sorting network (ASN). The ASN rearranges the hidden states to match the order in the target language, so that the SimulMT model could learn to translate more reasonably. The entire model is optimized end-to-end and does not rely on external aligners or data. During inference, ASN is removed to achieve streaming. Experiments show the proposed framework could outperform previous methods with less latency.
Deep learning based natural language processing (NLP) has become the mainstream of research in recent years and significantly outperforms conventional methods. However, deep learning models are notorious for being data and computation hungry. These downsides limit the application of such models from deployment to different domains, languages, countries, or styles, since collecting in-genre data and model training from scratch are costly. The long-tail nature of human language makes challenges even more significant. Meta-learning, or ‘Learning to Learn’, aims to learn better learning algorithms, including better parameter initialization, optimization strategy, network architecture, distance metrics, and beyond. Meta-learning has been shown to allow faster fine-tuning, converge to better performance, and achieve amazing results for few-shot learning in many applications. Meta-learning is one of the most important new techniques in machine learning in recent years. There is a related tutorial in ICML 2019 and a related course at Stanford, but most of the example applications given in these materials are about image processing. It is believed that meta-learning has great potential to be applied in NLP, and some works have been proposed with notable achievements in several relevant problems, e.g., relation extraction, machine translation, and dialogue generation and state tracking. However, it does not catch the same level of attention as in the image processing community. In the tutorial, we will first introduce Meta-learning approaches and the theory behind them, and then review the works of applying this technology to NLP problems. This tutorial intends to facilitate researchers in the NLP community to understand this new technology better and promote more research studies using this new technology.
Automatic detection of toxic language plays an essential role in protecting social media users, especially minority groups, from verbal abuse. However, biases toward some attributes, including gender, race, and dialect, exist in most training datasets for toxicity detection. The biases make the learned models unfair and can even exacerbate the marginalization of people. Considering that current debiasing methods for general natural language understanding tasks cannot effectively mitigate the biases in the toxicity detectors, we propose to use invariant rationalization (InvRat), a game-theoretic framework consisting of a rationale generator and a predictor, to rule out the spurious correlation of certain syntactic patterns (e.g., identity mentions, dialect) to toxicity labels. We empirically show that our method yields lower false positive rate in both lexical and dialectal attributes than previous debiasing methods.
Most chatbot literature that focuses on improving the fluency and coherence of a chatbot, is dedicated to making chatbots more human-like. However, very little work delves into what really separates humans from chatbots – humans intrinsically understand the effect their responses have on the interlocutor and often respond with an intention such as proposing an optimistic view to make the interlocutor feel better. This paper proposes an innovative framework to train chatbots to possess human-like intentions. Our framework includes a guiding chatbot and an interlocutor model that plays the role of humans. The guiding chatbot is assigned an intention and learns to induce the interlocutor to reply with responses matching the intention, for example, long responses, joyful responses, responses with specific words, etc. We examined our framework using three experimental setups and evaluated the guiding chatbot with four different metrics to demonstrate flexibility and performance advantages. Additionally, we performed trials with human interlocutors to substantiate the guiding chatbot’s effectiveness in influencing the responses of humans to a certain extent. Code will be made available to the public.
Speech separation is a problem in the field of speech processing that has been studied in full swing recently. However, there has not been much work studying a multi-accent speech separation scenario. Unseen speakers with new accents and noise aroused the domain mismatch problem which cannot be easily solved by conventional joint training methods. Thus, we applied MAML and FOMAML to tackle this problem and obtained higher average Si-SNRi values than joint training on almost all the unseen accents. This proved that these two methods do have the ability to generate well-trained parameters for adapting to speech mixtures of new speakers and accents. Furthermore, we found out that FOMAML obtains similar performance compared to MAML while saving a lot of time.
In this paper, we study the possibility of unsupervised Multiple Choices Question Answering (MCQA). From very basic knowledge, the MCQA model knows that some choices have higher probabilities of being correct than others. The information, though very noisy, guides the training of an MCQA model. The proposed method is shown to outperform the baseline approaches on RACE and is even comparable with some supervised learning approaches on MC500.
This paper investigates whether the power of the models pre-trained on text data, such as BERT, can be transferred to general token sequence classification applications. To verify pre-trained models’ transferability, we test the pre-trained models on text classification tasks with meanings of tokens mismatches, and real-world non-text token sequence classification data, including amino acid, DNA, and music. We find that even on non-text data, the models pre-trained on text converge faster, perform better than the randomly initialized models, and only slightly worse than the models using task-specific knowledge. We also find that the representations of the text and non-text pre-trained models share non-trivial similarities.
Speech translation (ST) aims to learn transformations from speech in the source language to the text in the target language. Previous works show that multitask learning improves the ST performance, in which the recognition decoder generates the text of the source language, and the translation decoder obtains the final translations based on the output of the recognition decoder. Because whether the output of the recognition decoder has the correct semantics is more critical than its accuracy, we propose to improve the multitask ST model by utilizing word embedding as the intermediate.
While behaviors of pretrained language models (LMs) have been thoroughly examined, what happened during pretraining is rarely studied. We thus investigate the developmental process from a set of randomly initialized parameters to a totipotent language model, which we refer to as the embryology of a pretrained language model. Our results show that ALBERT learns to reconstruct and predict tokens of different parts of speech (POS) in different learning speeds during pretraining. We also find that linguistic knowledge and world knowledge do not generally improve as pretraining proceeds, nor do downstream tasks’ performance. These findings suggest that knowledge of a pretrained model varies during pretraining, and having more pretrain steps does not necessarily provide a model with more comprehensive knowledge. We provide source codes and pretrained models to reproduce our results at https://github.com/d223302/albert-embryology.
Pre-training Transformer from large-scale raw texts and fine-tuning on the desired task have achieved state-of-the-art results on diverse NLP tasks. However, it is unclear what the learned attention captures. The attention computed by attention heads seems not to match human intuitions about hierarchical structures. This paper proposes Tree Transformer, which adds an extra constraint to attention heads of the bidirectional Transformer encoder in order to encourage the attention heads to follow tree structures. The tree structures can be automatically induced from raw texts by our proposed “Constituent Attention” module, which is simply implemented by self-attention between two adjacent words. With the same training procedure identical to BERT, the experiments demonstrate the effectiveness of Tree Transformer in terms of inducing tree structures, better language modeling, and further learning more explainable attention scores.
Data-driven, knowledge-grounded neural conversation models are capable of generating more informative responses. However, these models have not yet demonstrated that they can zero-shot adapt to updated, unseen knowledge graphs. This paper proposes a new task about how to apply dynamic knowledge graphs in neural conversation model and presents a novel TV series conversation corpus (DyKgChat) for the task. Our new task and corpus aids in understanding the influence of dynamic knowledge graphs on responses generation. Also, we propose a preliminary model that selects an output from two networks at each time step: a sequence-to-sequence model (Seq2Seq) and a multi-hop reasoning model, in order to support dynamic knowledge graphs. To benchmark this new task and evaluate the capability of adaptation, we introduce several evaluation metrics and the experiments show that our proposed approach outperforms previous knowledge-grounded conversation models. The proposed corpus and model can motivate the future research directions.
Because it is not feasible to collect training data for every language, there is a growing interest in cross-lingual transfer learning. In this paper, we systematically explore zero-shot cross-lingual transfer learning on reading comprehension tasks with language representation model pre-trained on multi-lingual corpus. The experimental results show that with pre-trained language representation zero-shot learning is feasible, and translating the source data into the target language is not necessary and even degrades the performance. We further explore what does the model learn in zero-shot setting.
Paraphrase generation is an interesting and challenging NLP task which has numerous practical applications. In this paper, we analyze datasets commonly used for paraphrase generation research, and show that simply parroting input sentences surpasses state-of-the-art models in the literature when evaluated on standard metrics. Our findings illustrate that a model could be seemingly adept at generating paraphrases, despite only making trivial changes to the input sentence or even none at all.
Although transfer learning has been shown to be successful for tasks like object and speech recognition, its applicability to question answering (QA) has yet to be well-studied. In this paper, we conduct extensive experiments to investigate the transferability of knowledge learned from a source QA dataset to a target dataset using two QA models. The performance of both models on a TOEFL listening comprehension test (Tseng et al., 2016) and MCTest (Richardson et al., 2013) is significantly improved via a simple transfer learning technique from MovieQA (Tapaswi et al., 2016). In particular, one of the models achieves the state-of-the-art on all target datasets; for the TOEFL listening comprehension test, it outperforms the previous best model by 7%. Finally, we show that transfer learning is helpful even in unsupervised scenarios when correct answers for target QA dataset examples are not available.
Auto-encoders compress input data into a latent-space representation and reconstruct the original data from the representation. This latent representation is not easily interpreted by humans. In this paper, we propose training an auto-encoder that encodes input text into human-readable sentences, and unpaired abstractive summarization is thereby achieved. The auto-encoder is composed of a generator and a reconstructor. The generator encodes the input text into a shorter word sequence, and the reconstructor recovers the generator input from the generator output. To make the generator output human-readable, a discriminator restricts the output of the generator to resemble human-written sentences. By taking the generator output as the summary of the input text, abstractive summarization is achieved without document-summary pairs as training data. Promising results are shown on both English and Chinese corpora.
In this paper, we propose new methods to learn Chinese word representations. Chinese characters are composed of graphical components, which carry rich semantics. It is common for a Chinese learner to comprehend the meaning of a word from these graphical components. As a result, we propose models that enhance word representations by character glyphs. The character glyph features are directly learned from the bitmaps of characters by convolutional auto-encoder(convAE), and the glyph features improve Chinese word representations which are already enhanced by character embeddings. Another contribution in this paper is that we created several evaluation datasets in traditional Chinese and made them public.