Multimodal Large Language Models (MLLMs) demonstrate remarkable performance across a wide range of domains, with increasing emphasis on enhancing their zero-shot generalization capabilities for unseen tasks across various modalities. Instruction tuning has emerged as an effective strategy for achieving zero-shot generalization by finetuning pretrained models on diverse multimodal tasks. As the scale of MLLMs continues to grow, parameter-efficient finetuning becomes increasingly critical. However, most existing parameter-efficient approaches focus only on single modalities and often overlook the multimodal characteristics during finetuning. In this work, we introduce a novel Multimodal Prompt Tuning (M2PT) approach for efficient instruction tuning of MLLMs. M2PT effectively integrates visual and textual prompts into the vision encoder and language processor respectively during finetuning, facilitating the extraction and alignment of features across modalities. Empirical results on various multimodal evaluation datasets demonstrate the superior performance of our approach compared to several state-of-the-art baselines. A comprehensive set of ablation studies validates the effectiveness of our prompt design and the efficiency of our approach.
We introduce DA-Code, a code generation benchmark specifically designed to assess LLMs on agent-based data science tasks. This benchmark features three core elements: First, the tasks within DA-Code are inherently challenging, setting them apart from traditional code generation tasks and demanding advanced coding skills in grounding and planning. Second, examples in DA-Code are all based on real and diverse data, covering a wide range of complex data wrangling and analytics tasks. Third, to solve the tasks, the models must utilize complex data science programming languages, including Python and SQL, to perform intricate data processing and derive the answers. We set up the benchmark in a controllable and executable environment that aligns with real-world data analysis scenarios and is scalable. The annotators meticulously designed the evaluation suite to ensure the accuracy and robustness of the evaluation. We developed the DA-Agent baseline. Experiments show that although the baseline performs better than other existing frameworks, using the current best LLMs achieves only 30.5% accuracy, leaving ample room for improvement. We release our benchmark at [link](https://github.com/yiyihum/dabench)
Interleaved text-and-image generation has been an intriguing research direction, where the models are required to generate both images and text pieces in an arbitrary order. Despite the emerging advancements in interleaved generation, the progress in its evaluation still significantly lags behind. Existing evaluation benchmarks do not support arbitrarily interleaved images and text for both inputs and outputs, and they only cover a limited number of domains and use cases. Also, current works predominantly use similarity-based metrics which fall short in assessing the quality in open-ended scenarios. To this end, we introduce InterleavedBench, the first benchmark carefully curated for the evaluation of interleaved text-and-image generation. InterleavedBench features a rich array of tasks to cover diverse real-world use cases. In addition, we present InterleavedEval, a strong reference-free metric powered by GPT-4o to deliver accurate and explainable evaluation. We carefully define five essential evaluation aspects for InterleavedEval, including text quality, perceptual quality, image coherence, text-image coherence, and helpfulness, to ensure a comprehensive and fine-grained assessment. Through extensive experiments and rigorous human evaluation, we show that our benchmark and metric can effectively evaluate the existing models with a strong correlation with human judgments surpassing previous reference-based metrics. We also provide substantial findings and insights to foster future research in interleaved generation and its evaluation.
Addressing the challenge of low-resource information extraction remains an ongoing issue due to the inherent information scarcity within limited training examples. Existing data augmentation methods, considered potential solutions, struggle to strike a balance between weak augmentation (e.g., synonym augmentation) and drastic augmentation (e.g., conditional generation without proper guidance). This paper introduces a novel paradigm that employs targeted augmentation and back validation to produce augmented examples with enhanced diversity, polarity, accuracy, and coherence. Extensive experimental results demonstrate the effectiveness of the proposed paradigm. Furthermore, identified limitations are discussed, shedding light on areas for future improvement.
In recent years, few-shot and zero-shot learning, which learn to predict labels with limited annotated instances, have garnered significant attention. Traditional approaches often treat frequent-shot (freq-shot; labels with abundant instances), few-shot, and zero-shot learning as distinct challenges, optimizing systems for just one of these scenarios. Yet, in real-world settings, label occurrences vary greatly. Some of them might appear thousands of times, while others might only appear sporadically or not at all. For practical deployment, it is crucial that a system can adapt to any label occurrence. We introduce a novel classification challenge: **X-shot**, reflecting a real-world context where freq-shot, few-shot, and zero-shot labels co-occur without predefined limits. Here, **X** can span from 0 to positive infinity. The crux of **X-shot** centers on open-domain generalization and devising a system versatile enough to manage various label scenarios. To solve **X-shot**, we propose **BinBin** (**B**inary **IN**ference **B**ased on **IN**struction following) that leverages the Indirect Supervision from a large collection of NLP tasks via instruction following, bolstered by Weak Supervision provided by large language models. **BinBin** surpasses previous state-of-the-art techniques on three benchmark datasets across multiple domains. To our knowledge, this is the first work addressing **X-shot** learning, where **X** remains variable.
Despite vision-language models’ (VLMs) remarkable capabilities as versatile visual assistants, two substantial challenges persist within the existing VLM frameworks: (1) lacking task diversity in pretraining and visual instruction tuning, and (2) annotation error and bias in GPT-4 synthesized instruction tuning data. Both challenges lead to issues such as poor generalizability, hallucination, and catastrophic forgetting. To address these challenges, we construct Vision-Flan, the most diverse publicly available visual instruction tuning dataset to date, comprising 187 diverse tasks and 1,664,261 instances sourced from academic datasets, and each task is accompanied by an expert-written instruction. In addition, we propose a two-stage instruction tuning framework, in which VLMs are firstly finetuned on Vision-Flan and further tuned on GPT-4 synthesized data. We find this two-stage tuning framework significantly outperforms the traditional single-stage visual instruction tuning framework and achieves the state-of-the-art performance across a wide range of multi-modal evaluation benchmarks. Finally, we conduct in-depth analyses to understand visual instruction tuning and our findings reveal that: (1) GPT-4 synthesized data does not substantially enhance VLMs’ capabilities but rather modulates the model’s responses to human-preferred formats; (2) A minimal quantity (e.g., 1,000) of GPT-4 synthesized data can effectively align VLM responses with human-preference; (3) Visual instruction tuning mainly helps large-language models (LLMs) to understand visual features.
Product attribute value extraction involves identifying the specific values associated with various attributes from a product profile. While existing methods often prioritize the development of effective models to improve extraction performance, there has been limited emphasis on extraction efficiency. However, in real-world scenarios, products are typically associated with multiple attributes, necessitating multiple extractions to obtain all corresponding values. In this work, we propose an Efficient product Attribute Value Extraction (EAVE) approach via lightweight sparse-layer interaction. Specifically, we employ a heavy encoder to separately encode the product context and attribute. The resulting non-interacting heavy representations of the context can be cached and reused for all attributes. Additionally, we introduce a light encoder to jointly encode the context and the attribute, facilitating lightweight interactions between them. To enrich the interaction within the lightweight encoder, we design a sparse-layer interaction module to fuse the non-interacting heavy representation into the lightweight encoder. Comprehensive evaluation on two benchmarks demonstrate that our method achieves significant efficiency gains with neutral or marginal loss in performance when the context is long and number of attributes is large. Our code is available at: https://anonymous.4open.science/r/EAVE-EA18.
Despite their vast capabilities, Large Language Models (LLMs) often struggle with generating reliable outputs, frequently producing high-confidence inaccuracies known as hallucinations. Addressing this challenge, our research introduces InternalInspector, a novel framework designed to enhance confidence estimation in LLMs by leveraging contrastive learning on internal states including attention states, feed-forward states, and activation states of all layers. Unlike existing methods that primarily focus on the final activation state, InternalInspector conducts a comprehensive analysis across all internal states of every layer to accurately identify both correct and incorrect prediction processes. By benchmarking InternalInspector against existing confidence estimation methods across various natural language understanding and generation tasks, including factual question answering, commonsense reasoning, and reading comprehension, InternalInspector achieves significantly higher accuracy in aligning the estimated confidence scores with the correctness of the LLM’s predictions and lower calibration error. Furthermore, InternalInspector excels at HaluEval, a hallucination detection benchmark, outperforming other internal-based confidence estimation methods in this task.
We propose a multi-agent debate as optimization (DAO) system for event extraction, where the primary objective is to iteratively refine the large language models (LLMs) outputs through debating without parameter tuning. In DAO, we introduce two novel modules: the Diverse-RAG (DRAG) module and the Adaptive Conformal Prediction (AdaCP) module. DRAG systematically retrieves supporting information that best fits the debate discussion, while AdaCP enhances the accuracy and reliability of event extraction by effectively rejecting less promising answers. Experimental results demonstrate a significant reduction in the performance gap between supervised approaches and tuning-free LLM-based methods by 18.1% and 17.8% on ACE05 and 17.9% and 15.2% on CASIE for event detection and argument extraction respectively.
During conversations, the human flow of thoughts may result in topic shifts and evolution. In open-domain dialogue systems, it is crucial to track the topics discussed and recommend relevant topics to be included in responses to have effective conversations. Furthermore, topic evolution is needed to prevent stagnation as conversation length increases. Existing open-domain dialogue systems do not pay sufficient attention to topic evolution and shifting, resulting in performance degradation due to ineffective responses as conversation length increases. To address the shortcomings of existing approaches, we propose EvolvConv. EvolvConv conducts real-time conversation topic and user preference tracking and utilizes the tracking information to evolve and shift topics depending on conversation status. We conduct extensive experiments to validate the topic evolving and shifting capabilities of EvolvConv as conversation length increases. Un-referenced evaluation metric UniEval compare EvolvConv with the baselines. Experimental results show that EvolvConv maintains a smooth conversation flow without abruptly shifting topics; the probability of topic shifting ranges between 5%-8% throughout the conversation. EvolvConv recommends 4.77% more novel topics than the baselines, and the topic evolution follows balanced topic groupings. Furthermore, we conduct user surveys to test the practical viability of EvolvConv. User survey results reveal that responses generated by EvolvConv are preferred 47.8% of the time compared to the baselines and comes second to real human responses.
Natural Language Generation (NLG) typically involves evaluating the generated text in various aspects (e.g., consistency and naturalness) to obtain a comprehensive assessment. However, multi-aspect evaluation remains challenging as it may require the evaluator to generalize to any given evaluation aspect even if it’s absent during training. In this paper, we introduce X-Eval, a two-stage instruction tuning framework to evaluate text in both seen and unseen aspects customized by end users. X-Eval consists of two learning stages: the vanilla instruction tuning stage that improves the model’s ability to follow evaluation instructions, and an enhanced instruction tuning stage that exploits the connections between fine-grained evaluation aspects to better assess text quality. To support the training of X-Eval, we collect AspectInstruct, the first instruction tuning dataset tailored for multi-aspect NLG evaluation spanning 27 diverse evaluation aspects with 65 tasks. To enhance task diversity, we devise an augmentation strategy that converts human rating annotations into diverse forms of NLG evaluation tasks, including scoring, comparison, ranking, and Boolean question answering. Extensive experiments across three essential categories of NLG tasks: dialogue generation, summarization, and data-to-text coupled with 21 aspects in meta-evaluation, demonstrate that X-Eval enables even a lightweight language model to achieve a comparable if not higher correlation with human judgments compared to the state-of-the-art NLG evaluators like GPT-4.
Current research in form understanding predominantly relies on large pre-trained language models, necessitating extensive data for pre-training. However, the importance of layout structure (i.e., the spatial relationship between the entity blocks in the visually rich document) to relation extraction has been overlooked. In this paper, we propose REgion-Aware Relation Extraction (\bf{RE^2}) that leverages region-level spatial structure among the entity blocks to improve their relation prediction. We design an edge-aware graph attention network to learn the interaction between entities while considering their spatial relationship defined by their region-level representations. We also introduce a constraint objective to regularize the model towards consistency with the inherent constraints of the relation extraction task. To support the research on relation extraction from visually rich documents and demonstrate the generalizability of \bf{RE^2}, we build a new benchmark dataset, DiverseForm, that covers a wide range of domains. Extensive experiments on DiverseForm and several public benchmark datasets demonstrate significant superiority and transferability of \bf{RE^2} across various domains and languages, with up to 18.88% absolute F-score gain over all high-performing baselines
We propose attribute-aware multimodal entity linking, where the input consists of a mention described with a text paragraph and images, and the goal is to predict the corresponding target entity from a multimodal knowledge base (KB) where each entity is also accompanied by a text description, visual images, and a collection of attributes that present the meta-information of the entity in a structured format. To facilitate this research endeavor, we construct Ameli, encompassing a new multimodal entity linking benchmark dataset that contains 16,735 mentions described in text and associated with 30,472 images, and a multimodal knowledge base that covers 34,690 entities along with 177,873 entity images and 798,216 attributes. To establish baseline performance on Ameli, we experiment with several state-of-the-art architectures for multimodal entity linking and further propose a new approach that incorporates attributes of entities into disambiguation. Experimental results and extensive qualitative analysis demonstrate that extracting and understanding the attributes of mentions from their text descriptions and visual images play a vital role in multimodal entity linking. To the best of our knowledge, we are the first to integrate attributes in the multimodal entity linking task. The programs, model checkpoints, and the dataset are publicly available at https://github.com/VT-NLP/Ameli.
Multimodal Large Language Models (MLLMs) have demonstrated remarkable proficiency in diverse tasks across different domains, with an increasing focus on improving their zero-shot generalization capabilities for unseen multimodal tasks. Multimodal instruction tuning has emerged as a successful strategy for achieving zero-shot generalization by fine-tuning pre-trained models on diverse multimodal tasks through instructions. As MLLMs grow in complexity and size, the need for parameter-efficient fine-tuning methods like Low-Rank Adaption (LoRA), which fine-tunes with a minimal set of parameters, becomes essential. However, applying LoRA in multimodal instruction tuning presents the challenge of task interference, which leads to performance degradation, especially when dealing with a broad array of multimodal tasks. To address this, this paper introduces a novel approach that integrates multimodal instruction tuning with Conditional Mixture-of-LoRA (MixLoRA). It innovates upon LoRA by dynamically constructing low-rank adaptation matrices tailored to the unique demands of each input instance, aiming to mitigate task interference. Experimental results on various multimodal evaluation datasets indicate that MixLoRA not only outperforms the conventional LoRA with the same or even higher ranks, demonstrating its efficacy and adaptability in diverse multimodal tasks.
Memory Editing (ME) has emerged as an efficient method to modify erroneous facts or inject new facts into Large Language Models (LLMs). Two mainstream ME methods exist: parameter-modifying ME and parameter-preserving ME (integrating extra modules while preserving original parameters). Regrettably, previous studies on ME evaluation have two critical limitations: (i) evaluating LLMs with single edit only, neglecting the need for continuous editing, and (ii) evaluations focusing solely on basic factual triples, overlooking broader LLM capabilities like logical reasoning and reading understanding. This study addresses these limitations with contributions threefold: (i) We explore how ME affects a wide range of fundamental capabilities of LLMs under sequential editing. Experimental results reveal an intriguing phenomenon: Most parameter-modifying ME consistently degrade performance across all tasks after a few sequential edits. In contrast, parameter-preserving ME effectively maintains LLMs’ fundamental capabilities but struggles to accurately recall edited knowledge presented in a different format. (ii) We extend our evaluation to different editing settings, such as layers to edit, model size, instruction tuning, etc. Experimental findings indicate several strategies that can potentially mitigate the adverse effects of ME. (iii) We further explain why parameter-modifying damages LLMs from three dimensions: parameter changes after editing, language modeling capability, and the in-context learning capability. Our in-depth study advocates more careful use of ME in real-world scenarios.
Instruction tuning, a new learning paradigm that fine-tunes pre-trained language models on tasks specified through instructions, has shown promising zero-shot performance on various natural language processing tasks. However, it has yet to be explored for vision and multimodal tasks. In this work, we introduce MultiInstruct, the first multimodal instruction tuning benchmark dataset that consists of 62 diverse multimodal tasks in a unified seq-to-seq format covering 10 broad categories. The tasks are derived from 21 existing open-source datasets and each task is equipped with 5 expert-written instructions. We take OFA as the base pre-trained model for multimodal instruction tuning, and to further improve its zero-shot performance, we explore multiple transfer learning strategies to leverage the large-scale Natural Instructions dataset. Experimental results demonstrate strong zero-shot performance on various unseen multimodal tasks and the benefit of transfer learning from a text-only instruction dataset. We also design a new evaluation metric – Sensitivity, to evaluate how sensitive the model is to the variety of instructions. Our results indicate that fine-tuning the model on a diverse set of tasks and instructions leads to a reduced sensitivity to variations in instructions for each task.
We compare various forms of prompts to represent event types and develop a unified framework to incorporate the event type specific prompts for supervised, few-shot, and zero-shot event detection. The experimental results demonstrate that a well-defined and comprehensive event type prompt can significantly improve event detection performance, especially when the annotated data is scarce (few-shot event detection) or not available (zero-shot event detection). By leveraging the semantics of event types, our unified framework shows up to 22.2% F-score gain over the previous state-of-the-art baselines.
Goal-oriented generative script learning aims to generate subsequent steps to reach a particular goal, which is an essential task to assist robots or humans in performing stereotypical activities. An important aspect of this process is the ability to capture historical states visually, which provides detailed information that is not covered by text and will guide subsequent steps. Therefore, we propose a new task, Multimedia Generative Script Learning, to generate subsequent steps by tracking historical states in both text and vision modalities, as well as presenting the first benchmark containing 5,652 tasks and 79,089 multimedia steps. This task is challenging in three aspects: the multimedia challenge of capturing the visual states in images, the induction challenge of performing unseen tasks, and the diversity challenge of covering different information in individual steps. We propose to encode visual state changes through a selective multimedia encoder to address the multimedia challenge, transfer knowledge from previously observed tasks using a retrieval-augmented decoder to overcome the induction challenge, and further present distinct information at each step by optimizing a diversity-oriented contrastive learning objective. We define metrics to evaluate both generation and inductive quality. Experiment results demonstrate that our approach significantly outperforms strong baselines.
Class-incremental learning (CIL) aims to develop a learning system that can continually learn new classes from a data stream without forgetting previously learned classes. When learning classes incrementally, the classifier must be constantly updated to incorporate new classes, and the drift in decision boundary may lead to severe forgetting. This fundamental challenge, however, has not yet been studied extensively, especially in the setting where no samples from old classes are stored for rehearsal. In this paper, we take a closer look at how the drift in the classifier leads to forgetting, and accordingly, design four simple yet (super-) effective solutions to alleviate the classifier drift: an Individual Classifiers with Frozen Feature Extractor (ICE) framework where we individually train a classifier for each learning session, and its three variants ICE-PL, ICE-O, and ICE-PL&O which further take the logits of previously learned classes from old sessions or a constant logit of an Other class as constraint to the learning of new classifiers. Extensive experiments and analysis on 6 class-incremental information extraction tasks demonstrate that our solutions, especially ICE-O, consistently show significant improvement over the previous state-of-the-art approaches with up to 44.7% absolute F-score gain, providing a strong baseline and insights for future research on class-incremental learning.
Data scarcity has been the main factor that hinders the progress of event extraction. To overcome this issue, we propose a Self-Training with Feedback (STF) framework that leverages the large-scale unlabeled data and acquires feedback for each new event prediction from the unlabeled data by comparing it to the Abstract Meaning Representation (AMR) graph of the same sentence. Specifically, STF consists of (1) a base event extraction model trained on existing event annotations and then applied to large-scale unlabeled corpora to predict new event mentions as pseudo training samples, and (2) a novel scoring model that takes in each new predicted event trigger, an argument, its argument role, as well as their paths in the AMR graph to estimate a compatibility score indicating the correctness of the pseudo label. The compatibility scores further act as feedback to encourage or discourage the model learning on the pseudo labels during self-training. Experimental results on three benchmark datasets, including ACE05-E, ACE05-E+, and ERE, demonstrate the effectiveness of the STF framework on event extraction, especially event argument extraction, with significant performance gain over the base event extraction models and strong baselines. Our experimental analysis further shows that STF is a generic framework as it can be applied to improve most, if not all, event extraction models by leveraging large-scale unlabeled data, even when high-quality AMR graph annotations are not available.
Fine-tuning pre-trained language models (LMs) has become the de facto standard in many NLP tasks. Nevertheless, fine-tuned LMs are still prone to robustness issues, such as adversarial robustness and model calibration. Several perspectives of robustness for LMs have been studied independently, but lacking a unified consideration in multiple perspectives. In this paper, we propose Robustifying LMs via Adversarial perturbation with Selective Training (RoAST), a simple yet effective fine-tuning technique to enhance the multi-perspective robustness of LMs in a unified way. RoAST effectively incorporates two important sources for the model robustness, robustness on the perturbed inputs and generalizable knowledge in pre-trained LMs. To be specific, RoAST introduces adversarial perturbation during fine-tuning while the model parameters are selectively updated upon their relative importance to minimize unnecessary deviation. Under a unified evaluation of fine-tuned LMs by incorporating four representative perspectives of model robustness, we demonstrate the effectiveness of RoAST compared to state-of-the-art fine-tuning methods on six different types of LMs, which indicates its usefulness in practice.
Chain-of-Thought (CoT) prompting enables large language models to solve complex reasoning problems by generating intermediate steps. However, confined by its inherent single-pass and sequential generation process, CoT heavily relies on the initial decisions, causing errors in early steps to accumulate and impact the final answers. In contrast, humans adopt recursive thinking when tackling complex reasoning problems, i.e. iteratively breaking the original problem into approachable sub-problems and aggregating their answers to resolve the original one. Inspired by the human cognitive process, we propose SOCRATIC QUESTIONING, a divide-and-conquer style algorithm that mimics the recursive thinking process. Specifically, SOCRATIC QUESTIONING leverages large language models to raise and answer sub-questions until collecting enough information to tackle the original question. Unlike CoT, SOCRATIC QUESTIONING explicitly navigates the thinking space, stimulates effective recursive thinking, and is more robust towards errors in the thinking process. Extensive experiments on several complex reasoning tasks, including MMLU, MATH, LogiQA, and visual question-answering demonstrate significant performance improvements over the state-of-the-art prompting methods, such as CoT, and Tree-of-Thought. The qualitative analysis clearly shows that the intermediate reasoning steps elicited by SOCRATIC QUESTIONING are similar to humans’ recursively thinking process of complex reasoning problems.
With the continuous growth of large language models, the process of fine-tuning these models for new tasks has become increasingly parameter-intensive. Prompt tuning, a method that involves tuning a small set of soft prompts, has emerged as an effective and efficient approach for adapting large pre-trained language models. However, most existing prompt tuning approaches only introduce prompts at the input layer, limiting their performance and leaving large rooms for improvement. In this work, we propose a novel Attention Prompt tuning method, namely APrompt, for efficient adaptation of pre-trained language models. We first demonstrate that existing prompt tuning can be considered as a special case of attention prompt tuning. We then formally introduce APrompt, which incorporates query, key, and value prompts into the attention layer to guide the attention computation during fine-tuning. Experimental results on the SuperGLUE benchmark consistently demonstrate that our proposed approach outperforms state-of-the-art baselines and full fine-tuning method with pre-trained models at different scales. In addition, a comprehensive set of ablation studies validate the effectiveness of the prompt design, as well as the efficiency of our approach.
This tutorial targets researchers and practitioners who are interested in AI and ML technologies for structural information extraction (IE) from unstructured textual sources. Particularly, this tutorial will provide audience with a systematic introduction to recent advances of IE, by answering several important research questions. These questions include (i) how to develop an robust IE system from noisy, insufficient training data, while ensuring the reliability of its prediction? (ii) how to foster the generalizability of IE through enhancing the system’s cross-lingual, cross-domain, cross-task and cross-modal transferability? (iii) how to precisely support extracting structural information with extremely fine-grained, diverse and boundless labels? (iv) how to further improve IE by leveraging indirect supervision from other NLP tasks, such as NLI, QA or summarization, and pre-trained language models? (v) how to acquire knowledge to guide the inference of IE systems? We will discuss several lines of frontier research that tackle those challenges, and will conclude the tutorial by outlining directions for further investigation.
Antibiotic resistance has become a growing worldwide concern as new resistance mechanisms are emerging and spreading globally, and thus detecting and collecting the cause – Antibiotic Resistance Genes (ARGs), have been more critical than ever. In this work, we aim to automate the curation of ARGs by extracting ARG-related assertive statements from scientific papers. To support the research towards this direction, we build SciARG, a new benchmark dataset containing 2,000 manually annotated statements as the evaluation set and 12,516 silver-standard training statements that are automatically created from scientific papers by a set of rules. To set up the baseline performance on SciARG, we exploit three state-of-the-art neural architectures based on pre-trained language models and prompt tuning, and further ensemble them to attain the highest 77.0% F-score. To the best of our knowledge, we are the first to leverage natural language processing techniques to curate all validated ARGs from scientific papers. Both the code and data are publicly available at https://github.com/VT-NLP/SciARG.
Despite recent progress of pre-trained language models on generating fluent text, existing methods still suffer from incoherence problems in long-form text generation tasks that require proper content control and planning to form a coherent high-level logical flow. In this work, we propose PLANET, a novel generation framework leveraging autoregressive self-attention mechanism to conduct content planning and surface realization dynamically. To guide the generation of output sentences, our framework enriches the Transformer decoder with latent representations to maintain sentence-level semantic plans grounded by bag-of-words. Moreover, we introduce a new coherence-based contrastive learning objective to further improve the coherence of output. Extensive experiments are conducted on two challenging long-form text generation tasks including counterargument generation and opinion article generation. Both automatic and human evaluations show that our method significantly outperforms strong baselines and generates more coherent texts with richer contents.
Teaching neural models to generate narrative coherent texts is a critical problem. Recent pre-trained language models have achieved promising results, but there is still a gap between human written texts and machine-generated outputs. In this work, we propose a novel multi-task training strategy for long text generation grounded on the cognitive theory of writing, which empowers the model to learn essential subskills needed for writing including planning and reviewing besides end-to-end generation. We extensively evaluate our model on three open-ended generation tasks including story generation, news article writing and argument generation. Experiments show that our model achieves better results on both few-shot and fully-supervised settings than strong baselines, and human evaluations confirm that our model can generate more coherent outputs.
Event extraction is typically modeled as a multi-class classification problem where event types and argument roles are treated as atomic symbols. These approaches are usually limited to a set of pre-defined types. We propose a novel event extraction framework that uses event types and argument roles as natural language queries to extract candidate triggers and arguments from the input text. With the rich semantics in the queries, our framework benefits from the attention mechanisms to better capture the semantic correlation between the event types or argument roles and the input text. Furthermore, the query-and-extract formulation allows our approach to leverage all available event annotations from various ontologies as a unified model. Experiments on ACE and ERE demonstrate that our approach achieves state-of-the-art performance on each dataset and significantly outperforms existing methods on zero-shot event extraction.
Extracting temporal relations (e.g., before, after, and simultaneous) among events is crucial to natural language understanding. One of the key challenges of this problem is that when the events of interest are far away in text, the context in-between often becomes complicated, making it challenging to resolve the temporal relationship between them. This paper thus proposes a new Syntax-guided Graph Transformer network (SGT) to mitigate this issue, by (1) explicitly exploiting the connection between two events based on their dependency parsing trees, and (2) automatically locating temporal cues between two events via a novel syntax-guided attention mechanism. Experiments on two benchmark datasets, MATRES and TB-DENSE, show that our approach significantly outperforms previous state-of-the-art methods on both end-to-end temporal relation extraction and temporal relation classification with up to 7.9% absolute F-score gain; This improvement also proves to be robust on the contrast set of MATRES. We will make all the programs publicly available once the paper is accepted.
Federated learning (FL) can be essential in knowledge representation, reasoning, and data mining applications over multi-source knowledge graphs (KGs). A recent study FedE first proposes an FL framework that shares entity embeddings of KGs across all clients. However, entity embedding sharing from FedE would incur a severe privacy leakage. Specifically, the known entity embedding can be used to infer whether a specific relation between two entities exists in a private client. In this paper, we introduce a novel attack method that aims to recover the original data based on the embedding information, which is further used to evaluate the vulnerabilities of FedE. Furthermore, we propose a Federated learning paradigm with privacy-preserving Relation embedding aggregation (FedR) to tackle the privacy issue in FedE. Besides, relation embedding sharing can significantly reduce the communication cost due to its smaller size of queries. We conduct extensive experiments to evaluate FedR with five different KG embedding models and three datasets. Compared to FedE, FedR achieves similar utility and significant improvements regarding privacy-preserving effect and communication efficiency on the link prediction task.
Adversarial attack of structured prediction models faces various challenges such as the difficulty of perturbing discrete words, the sentence quality issue, and the sensitivity of outputs to small perturbations. In this work, we introduce SHARP, a new attack method that formulates the black-box adversarial attack as a search-based optimization problem with a specially designed objective function considering sentence fluency, meaning preservation and attacking effectiveness. Additionally, three different searching strategies are analyzed and compared, , Beam Search, Metropolis-Hastings Sampling, and Hybrid Search. We demonstrate the effectiveness of our attacking strategies on two challenging structured prediction tasks: part-of-speech (POS) tagging and dependency parsing. Through automatic and human evaluations, we show that our method performs a more potent attack compared with pioneer arts. Moreover, the generated adversarial examples can be used to successfully boost the robustness and performance of the victim model via adversarial training.
Lifelong event detection aims to incrementally update a model with new event types and data while retaining the capability on previously learned old types. One critical challenge is that the model would catastrophically forget old types when continually trained on new data. In this paper, we introduce Episodic Memory Prompts (EMP) to explicitly retain the learned task-specific knowledge. Our method adopts continuous prompt for each task and they are optimized to instruct the model prediction and learn event-specific representation. The EMPs learned in previous tasks are carried along with the model in subsequent tasks, and can serve as a memory module that keeps the old knowledge and transferring to new tasks. Experiment results demonstrate the effectiveness of our method. Furthermore, we also conduct a comprehensive analysis of the new and old event types in lifelong learning.
Knowledge Graph (KG) and attention mechanism have been demonstrated effective in introducing and selecting useful information for weakly supervised methods. However, only qualitative analysis and ablation study are provided as evidence. In this paper, we contribute a dataset and propose a paradigm to quantitatively evaluate the effect of attention and KG on bag-level relation extraction (RE). We find that (1) higher attention accuracy may lead to worse performance as it may harm the model’s ability to extract entity mention features; (2) the performance of attention is largely influenced by various noise distribution patterns, which is closely related to real-world datasets; (3) KG-enhanced attention indeed improves RE performance, while not through enhanced attention but by incorporating entity prior; and (4) attention mechanism may exacerbate the issue of insufficient training data. Based on these findings, we show that a straightforward variant of RE model can achieve significant improvements (6% AUC on average) on two real-world datasets as compared with three state-of-the-art baselines. Our codes and datasets are available at https://github.com/zig-kwin-hu/how-KG-ATT-help.
Event schemas encode knowledge of stereotypical structures of events and their connections. As events unfold, schemas are crucial to act as a scaffolding. Previous work on event schema induction focuses either on atomic events or linear temporal event sequences, ignoring the interplay between events via arguments and argument relations. We introduce a new concept of Temporal Complex Event Schema: a graph-based schema representation that encompasses events, arguments, temporal connections and argument relations. In addition, we propose a Temporal Event Graph Model that predicts event instances following the temporal complex event schema. To build and evaluate such schemas, we release a new schema learning corpus containing 6,399 documents accompanied with event graphs, and we have manually constructed gold-standard schemas. Intrinsic evaluations by schema matching and instance graph perplexity, prove the superior quality of our probabilistic graph schema library compared to linear representations. Extrinsic evaluation on schema-guided future event prediction further demonstrates the predictive power of our event graph model, significantly outperforming human schemas and baselines by more than 17.8% on HITS@1.
To assist human review process, we build a novel ReviewRobot to automatically assign a review score and write comments for multiple categories such as novelty and meaningful comparison. A good review needs to be knowledgeable, namely that the comments should be constructive and informative to help improve the paper; and explainable by providing detailed evidence. ReviewRobot achieves these goals via three steps: (1) We perform domain-specific Information Extraction to construct a knowledge graph (KG) from the target paper under review, a related work KG from the papers cited by the target paper, and a background KG from a large collection of previous papers in the domain. (2) By comparing these three KGs, we predict a review score and detailed structured knowledge as evidence for each review category. (3) We carefully select and generalize human review sentences into templates, and apply these templates to transform the review scores and evidence into natural language comments. Experimental results show that our review score predictor reaches 71.4%-100% accuracy. Human assessment by domain experts shows that 41.7%-70.5% of the comments generated by ReviewRobot are valid and constructive, and better than human-written ones for 20% of the time. Thus, ReviewRobot can serve as an assistant for paper reviewers, program chairs and authors.
Most previous event extraction studies assume a set of target event types and corresponding event annotations are given, which could be very expensive. In this paper, we work on a new task of semi-supervised event type induction, aiming to automatically discover a set of unseen types from a given corpus by leveraging annotations available for a few seen types. We design a Semi-Supervised Vector Quantized Variational Autoencoder framework to automatically learn a discrete latent type representation for each seen and unseen type and optimize them using seen type event annotations. A variational autoencoder is further introduced to enforce the reconstruction of each event mention conditioned on its latent type distribution. Experiments show that our approach can not only achieve state-of-the-art performance on supervised event detection but also discover high-quality new event types.
We present a PaperRobot who performs as an automatic research assistant by (1) conducting deep understanding of a large collection of human-written papers in a target domain and constructing comprehensive background knowledge graphs (KGs); (2) creating new ideas by predicting links from the background KGs, by combining graph attention and contextual text attention; (3) incrementally writing some key elements of a new paper based on memory-attention networks: from the input title along with predicted related entities to generate a paper abstract, from the abstract to generate conclusion and future work, and finally from future work to generate a title for a follow-on paper. Turing Tests, where a biomedical domain expert is asked to compare a system output and a human-authored string, show PaperRobot generated abstracts, conclusion and future work sections, and new titles are chosen over human-written ones up to 30%, 24% and 12% of the time, respectively.
Event extraction for the biomedical domain is more challenging than that in the general news domain since it requires broader acquisition of domain-specific knowledge and deeper understanding of complex contexts. To better encode contextual information and external background knowledge, we propose a novel knowledge base (KB)-driven tree-structured long short-term memory networks (Tree-LSTM) framework, incorporating two new types of features: (1) dependency structures to capture wide contexts; (2) entity properties (types and category descriptions) from external ontologies via entity linking. We evaluate our approach on the BioNLP shared task with Genia dataset and achieve a new state-of-the-art result. In addition, both quantitative and qualitative studies demonstrate the advancement of the Tree-LSTM and the external knowledge representation for biomedical event extraction.
We focus on improving name tagging for low-resource languages using annotations from related languages. Previous studies either directly project annotations from a source language to a target language using cross-lingual representations or use a shared encoder in a multitask network to transfer knowledge. These approaches inevitably introduce noise to the target language annotation due to mismatched source-target sentence structures. To effectively transfer the resources, we develop a new neural architecture that leverages multi-level adversarial transfer: (1) word-level adversarial training, which projects source language words into the same semantic space as those of the target language without using any parallel corpora or bilingual gazetteers, and (2) sentence-level adversarial training, which yields language-agnostic sequential features. Our neural architecture outperforms previous approaches on CoNLL data sets. Moreover, on 10 low-resource languages, our approach achieves up to 16% absolute F-score gain over all high-performing baselines on cross-lingual transfer without using any target-language resources.
Understanding narratives requires reading between the lines, which in turn, requires interpreting the likely causes and effects of events, even when they are not mentioned explicitly. In this paper, we introduce Cosmos QA, a large-scale dataset of 35,600 problems that require commonsense-based reading comprehension, formulated as multiple-choice questions. In stark contrast to most existing reading comprehension datasets where the questions focus on factual and literal understanding of the context paragraph, our dataset focuses on reading between the lines over a diverse collection of people’s everyday narratives, asking such questions as “what might be the possible reason of ...?", or “what would have happened if ..." that require reasoning beyond the exact text spans in the context. To establish baseline performances on Cosmos QA, we experiment with several state-of-the-art neural architectures for reading comprehension, and also propose a new architecture that improves over the competitive baselines. Experimental results demonstrate a significant gap between machine (68.4%) and human performance (94%), pointing to avenues for future research on commonsense machine comprehension. Dataset, code and leaderboard is publicly available at https://wilburone.github.io/cosmos.
We present a new dataset and models for comprehending paragraphs about processes (e.g., photosynthesis), an important genre of text describing a dynamic world. The new dataset, ProPara, is the first to contain natural (rather than machine-generated) text about a changing world along with a full annotation of entity states (location and existence) during those changes (81k datapoints). The end-task, tracking the location and existence of entities through the text, is challenging because the causal effects of actions are often implicit and need to be inferred. We find that previous models that have worked well on synthetic data achieve only mediocre performance on ProPara, and introduce two new neural models that exploit alternative mechanisms for state prediction, in particular using LSTM input encoding and span prediction. The new models improve accuracy by up to 19%. We are releasing the ProPara dataset and our models to the community.
Many name tagging approaches use local contextual information with much success, but can fail when the local context is ambiguous or limited. We present a new framework to improve name tagging by utilizing local, document-level, and corpus-level contextual information. For each word, we retrieve document-level context from other sentences within the same document and corpus-level context from sentences in other documents. We propose a model that learns to incorporate document-level and corpus-level contextual information alongside local contextual information via document-level and corpus-level attentions, which dynamically weight their respective contextual information and determines the influence of this information through gating mechanisms. Experiments on benchmark datasets show the effectiveness of our approach, which achieves state-of-the-art results for Dutch, German, and Spanish on the CoNLL-2002 and CoNLL-2003 datasets. We will make our code and pre-trained models publicly available for research purposes.
Most previous supervised event extraction methods have relied on features derived from manual annotations, and thus cannot be applied to new event types without extra annotation effort. We take a fresh look at event extraction and model it as a generic grounding problem: mapping each event mention to a specific type in a target event ontology. We design a transferable architecture of structural and compositional neural networks to jointly represent and map event mentions and types into a shared semantic space. Based on this new framework, we can select, for each event mention, the event type which is semantically closest in this space as its type. By leveraging manual annotations available for a small set of existing event types, our framework can be applied to new unseen event types without additional manual annotations. When tested on 23 unseen event types, our zero-shot framework, without manual annotations, achieved performance comparable to a supervised model trained from 3,000 sentences annotated with 500 event mentions.
We present a paper abstract writing system based on an attentive neural sequence-to-sequence model that can take a title as input and automatically generate an abstract. We design a novel Writing-editing Network that can attend to both the title and the previously generated abstract drafts and then iteratively revise and polish the abstract. With two series of Turing tests, where the human judges are asked to distinguish the system-generated abstracts from human-written ones, our system passes Turing tests by junior domain experts at a rate up to 30% and by non-expert at a rate up to 80%.
We present a neural recommendation model for Chengyu, which is a special type of Chinese idiom. Given a query, which is a sentence with an empty slot where the Chengyu is taken out, our model will recommend the best Chengyu candidate that best fits the slot context. The main challenge lies in that the literal meaning of a Chengyu is usually very different from it’s figurative meaning. We propose a new neural approach to leverage the definition of each Chengyu and incorporate it as background knowledge. Experiments on both Chengyu cloze test and coherence checking in college entrance exams show that our system achieves 89.5% accuracy on cloze test and outperforms human subjects who attended competitive universities in China. We will make all of our data sets and resources publicly available as a new benchmark for research purposes.
We aim to automatically generate natural language descriptions about an input structured knowledge base (KB). We build our generation framework based on a pointer network which can copy facts from the input KB, and add two attention mechanisms: (i) slot-aware attention to capture the association between a slot type and its corresponding slot value; and (ii) a new table position self-attention to capture the inter-dependencies among related slots. For evaluation, besides standard metrics including BLEU, METEOR, and ROUGE, we propose a KB reconstruction based metric by extracting a KB from the generation output and comparing it with the input KB. We also create a new data set which includes 106,216 pairs of structured KBs and their corresponding natural language descriptions for two distinct entity types. Experiments show that our approach significantly outperforms state-of-the-art methods. The reconstructed KB achieves 68.8% - 72.6% F-score.
We construct a multilingual common semantic space based on distributional semantics, where words from multiple languages are projected into a shared space via which all available resources and knowledge can be shared across multiple languages. Beyond word alignment, we introduce multiple cluster-level alignments and enforce the word clusters to be consistently distributed across multiple languages. We exploit three signals for clustering: (1) neighbor words in the monolingual word embedding space; (2) character-level information; and (3) linguistic properties (e.g., apposition, locative suffix) derived from linguistic structure knowledge bases available for thousands of languages. We introduce a new cluster-consistent correlational neural network to construct the common semantic space by aligning words as well as clusters. Intrinsic evaluation on monolingual and multilingual QVEC tasks shows our approach achieves significantly higher correlation with linguistic features which are extracted from manually crafted lexical resources than state-of-the-art multi-lingual embedding learning methods do. Using low-resource language name tagging as a case study for extrinsic evaluation, our approach achieves up to 14.6% absolute F-score gain over the state of the art on cross-lingual direct transfer. Our approach is also shown to be robust even when the size of bilingual dictionary is small.
Relation Extraction suffers from dramatical performance decrease when training a model on one genre and directly applying it to a new genre, due to the distinct feature distributions. Previous studies address this problem by discovering a shared space across genres using manually crafted features, which requires great human effort. To effectively automate this process, we design a genre-separation network, which applies two encoders, one genre-independent and one genre-shared, to explicitly extract genre-specific and genre-agnostic features. Then we train a relation classifier using the genre-agnostic features on the source genre and directly apply to the target genre. Experiment results on three distinct genres of the ACE dataset show that our approach achieves up to 6.1% absolute F1-score gain compared to previous methods. By incorporating a set of external linguistic features, our approach outperforms the state-of-the-art by 1.7% absolute F1 gain. We make all programs of our model publicly available for research purpose
Current image captioning approaches generate descriptions which lack specific information, such as named entities that are involved in the images. In this paper we propose a new task which aims to generate informative image captions, given images and hashtags as input. We propose a simple but effective approach to tackle this problem. We first train a convolutional neural networks - long short term memory networks (CNN-LSTM) model to generate a template caption based on the input image. Then we use a knowledge graph based collective inference algorithm to fill in the template with specific named entities retrieved via the hashtags. Experiments on a new benchmark dataset collected from Flickr show that our model generates news-style image descriptions with much richer information. Our model outperforms unimodal baselines significantly with various evaluation metrics.
Previous open Relation Extraction (open RE) approaches mainly rely on linguistic patterns and constraints to extract important relational triples from large-scale corpora. However, they lack of abilities to cover diverse relation expressions or measure the relative importance of candidate triples within a sentence. It is also challenging to name the relation type of a relational triple merely based on context words, which could limit the usefulness of open RE in downstream applications. We propose a novel importance-based open RE approach by exploiting the global structure of a dependency tree to extract salient triples. We design an unsupervised relation type naming method by grounding relational triples to a large-scale Knowledge Base (KB) schema, leveraging KB triples and weighted context words associated with relational triples. Experiments on the English Slot Filling 2013 dataset demonstrate that our approach achieves 8.1% higher F-score over state-of-the-art open RE methods.
Slot Filling (SF) aims to extract the values of certain types of attributes (or slots, such as person:cities_of_residence) for a given entity from a large collection of source documents. In this paper we propose an effective DNN architecture for SF with the following new strategies: (1). Take a regularized dependency graph instead of a raw sentence as input to DNN, to compress the wide contexts between query and candidate filler; (2). Incorporate two attention mechanisms: local attention learned from query and candidate filler, and global attention learned from external knowledge bases, to guide the model to better select indicative contexts to determine slot type. Experiments show that this framework outperforms state-of-the-art on both relation extraction (16% absolute F-score gain) and slot filling validation for each individual system (up to 8.5% absolute F-score gain).
Learning phrase representations has been widely explored in many Natural Language Processing tasks (e.g., Sentiment Analysis, Machine Translation) and has shown promising improvements. Previous studies either learn non-compositional phrase representations with general word embedding learning techniques or learn compositional phrase representations based on syntactic structures, which either require huge amounts of human annotations or cannot be easily generalized to all phrases. In this work, we propose to take advantage of large-scaled paraphrase database and present a pairwise-GRU framework to generate compositional phrase representations. Our framework can be re-used to generate representations for any phrases. Experimental results show that our framework achieves state-of-the-art results on several phrase similarity tasks.
Integrating text and knowledge into a unified semantic space has attracted significant research interests recently. However, the ambiguity in the common space remains a challenge, namely that the same mention phrase usually refers to various entities. In this paper, to deal with the ambiguity of entity mentions, we propose a novel Multi-Prototype Mention Embedding model, which learns multiple sense embeddings for each mention by jointly modeling words from textual contexts and entities derived from a knowledge base. In addition, we further design an efficient language model based approach to disambiguate each mention to a specific sense. In experiments, both qualitative and quantitative analysis demonstrate the high quality of the word, entity and multi-prototype mention embeddings. Using entity linking as a study case, we apply our disambiguation method as well as the multi-prototype mention embeddings on the benchmark dataset, and achieve state-of-the-art performance.