Previously, non-autoregressive models were widely recognized as being superior in generation efficiency but inferior in generation quality due to the challenges of modeling multiple target modalities.To enhance the multi-modality modeling ability, we propose the diffusion glancing transformer, which employs a modality diffusion process and residual glancing sampling.The modality diffusion process is a discrete process that interpolates the multi-modal distribution along the decoding steps, and the residual glancing sampling approach guides the model to continuously learn the remaining modalities across the layers. Experimental results on various machine translation and text generation benchmarks demonstrate that DIFFGLAT achieves better generation accuracy while maintaining fast decoding speed compared with both autoregressive and non-autoregressive models.
Is it possible to train a general metric for evaluating text generation quality without human-annotated ratings? Existing learned metrics either perform unsatisfactory across text generation tasks or require human ratings for training on specific tasks. In this paper, we propose SEScore2, a self-supervised approach for training a model-based metric for text generation evaluation. The key concept is to synthesize realistic model mistakes by perturbing sentences retrieved from a corpus. We evaluate SEScore2 and previous methods on four text generation tasks across three languages. SEScore2 outperforms all prior unsupervised metrics on four text generation evaluation benchmarks, with an average Kendall improvement of 0.158. Surprisingly, SEScore2 even outperforms the supervised BLEURT and COMET on multiple text generation tasks.
Automatic metrics play a crucial role in machine translation. Despite the widespread use of n-gram-based metrics, there has been a recent surge in the development of pre-trained model-based metrics that focus on measuring sentence semantics. However, these neural metrics, while achieving higher correlations with human evaluations, are often considered to be black boxes with potential biases that are difficult to detect. In this study, we systematically analyze and compare various mainstream and cutting-edge automatic metrics from the perspective of their guidance for training machine translation systems. Through Minimum Risk Training (MRT), we find that certain metrics exhibit robustness defects, such as the presence of universal adversarial translations in BLEURT and BARTScore. In-depth analysis suggests two main causes of these robustness deficits: distribution biases in the training datasets, and the tendency of the metric paradigm. By incorporating token-level constraints, we enhance the robustness of evaluation metrics, which in turn leads to an improvement in the performance of machine translation systems. Codes are available at https://github.com/powerpuffpomelo/fairseq_mrt.
Combining end-to-end speech translation (ST) and non-autoregressive (NAR) generation is promising in language and speech processing for their advantages of less error propagation and low latency. In this paper, we investigate the potential of connectionist temporal classification (CTC) for non-autoregressive speech translation (NAST).In particular, we develop a model consisting of two encoders that are guided by CTC to predict the source and target texts, respectively. Introducing CTC into NAST on both language sides has obvious challenges: 1) the conditional independent generation somewhat breaks the interdependency among tokens, and 2) the monotonic alignment assumption in standard CTC does not hold in translation tasks. In response, we develop a prediction-aware encoding approach and a cross-layer attention approach to address these issues. We also use curriculum learning to improve convergence of training. Experiments on the MuST-C ST benchmarks show that our NAST model achieves an average BLEU score of 29.5 with a speed-up of 5.67×, which is comparable to the autoregressive counterpart and even outperforms the previous best result of 0.9 BLEU points.
As a subjective metric to evaluate the quality of synthesized speech, Mean opinion score(MOS) usually requires multiple annotators to score the same speech. Such an annotation approach requires a lot of manpower and is also time-consuming. MOS prediction model for automatic evaluation can significantly reduce labor cost. In previous works, it is difficult to accurately rank the quality of speech when the MOS scores are close. However, in practical applications, it is more important to correctly rank the quality of synthesis systems or sentences than simply predicting MOS scores. Meanwhile, as each annotator scores multiple audios during annotation, the score is probably a relative value based on the first or the first few speech scores given by the annotator. Motivated by the above two points, we propose a general framework for MOS prediction based on pair comparison (MOSPC), and we utilize C-Mixup algorithm to enhance the generalization performance of MOSPC.The experiments on BVCC and VCC2018 show that our framework outperforms the baselines on most of the correlation coefficient metrics, especially on the metric KTAU related to quality ranking. And our framework also surpasses the strong baseline in ranking accuracy on each fine-grained segment. These results indicate that our framework contributes to improving the ranking accuracy of speech quality.
Deploying NMT models on mobile devices is essential for privacy, low latency, and offline scenarios. For high model capacity, NMT models are rather large. Running these models on devices is challenging with limited storage, memory, computation, and power consumption. Existing work either only focuses on a single metric such as FLOPs or general engine which is not good at auto-regressive decoding. In this paper, we present MobileNMT, a system that can translate in 15MB and 30ms on devices. We propose a series of principles for model compression when combined with quantization. Further, we implement an engine that is friendly to INT8 and decoding. With the co-design of model and engine, compared with the existing system, we speed up 47.0x and save 99.5% of memory with only 11.6% loss of BLEU. Our code will be publicly available after the anonymity period.
This paper reports on the shared tasks organized by the 20th IWSLT Conference. The shared tasks address 9 scientific challenges in spoken language translation: simultaneous and offline translation, automatic subtitling and dubbing, speech-to-speech translation, multilingual, dialect and low-resource speech translation, and formality control. The shared tasks attracted a total of 38 submissions by 31 teams. The growing interest towards spoken language translation is also witnessed by the constantly increasing number of shared task organizers and contributors to the overview paper, almost evenly distributed across industry and academia.
Controlling styles in neural machine translation (NMT) has attracted wide attention, as it is crucial for enhancing user experience. Earlier studies on this topic typically concentrate on regulating the level of formality and achieve some progress in this area. However, they still encounter two major challenges. The first is the difficulty in style evaluation. The style comprises various aspects such as lexis, syntax, and others that provide abundant information. Nevertheless, only formality has been thoroughly investigated. The second challenge involves excessive dependence on incremental adjustments, particularly when new styles are necessary. To address both challenges, this paper presents a new benchmark and approach. A multiway stylized machine translation (MSMT) benchmark is introduced, incorporating diverse categories of styles across four linguistic domains. Then, we propose a method named style activation prompt (StyleAP) by retrieving prompts from stylized monolingual corpus, which does not require extra fine-tuning. Experiments show that StyleAP could effectively control the style of translation and achieve remarkable performance.
Multimodal machine translation (MMT) aims to improve translation quality by incorporating information from other modalities, such as vision. Previous MMT systems focus on better access and use of visual information and tend to validate their methods on image-related datasets. However, these studies face two challenges. First, they can only utilize a limited amount of data that is composed of bilingual texts and images (referred to as “triple data”), which is scarce. Second, current benchmarks for MMT are restricted and do not correspond to realistic scenarios. Therefore, this paper correspondingly establishes new methods and a new dataset for MMT. We propose a novel framework for MMT that addresses these challenges by utilizing large-scale non-triple data, such as monolingual image-text and parallel text-only data. Additionally, we construct a new e-commercial multimodal translation dataset, named EMMT, of which the test set is specifically designed to include ambiguous words that require visual context for accurate translation. Experiments show that our method is well-suited for real-world scenarios and can significantly improve translation performance with more non-triple data. In addition, our model also rivals or surpasses various SOTA models in conventional multimodal translation benchmarks.
How can speech-to-text translation (ST) perform as well as machine translation (MT)? The key point is to bridge the modality gap between speech and text so that useful MT techniques can be applied to ST.Recently, the approach of representing speech with unsupervised discrete units yields a new way to ease the modality problem. This motivates us to propose Discrete Unit Back-translation(DUB) to answer two questions (1) Is it better to represent speech with discrete units than with continuous features in direct ST? (2) How much benefit can useful MT techniques bring to ST? With DUB, the back-translation technique can successfully be applied on direct ST and obtains an average boost of 5.5 BLEU on MuST-C En-De/Fr/Es. In the low-resource language scenario, our method achieves comparable performance to existing methods that rely on large-scale external data. Code and models are available at https://anonymous.4open.science/r/DUB/.
We present a large-scale video subtitle translation dataset, *BigVideo*, to facilitate the study of multi-modality machine translation. Compared with the widely used *How2* and *VaTeX* datasets, *BigVideo* is more than 10 times larger, consisting of 4.5 million sentence pairs and 9,981 hours of videos. We also introduce two deliberately designed test sets to verify the necessity of visual information: *Ambiguous* with the presence of ambiguous words, and *Unambiguous* in which the text context is self-contained for translation. To better model the common semantics shared across texts and videos, we introduce a contrastive learning method in the cross-modal encoder. Extensive experiments on the *BigVideo* shows that: a) Visual information consistently improves the NMT model in terms of BLEU, BLEURT and COMET on both Ambiguous and Unambiguous test sets. b) Visual information helps disambiguation, compared to the strong text baseline on terminology-targeted scores and human evaluation.
How can we learn unified representations for spoken utterances and their written text? Learning similar representations for semantically similar speech and text is important for speech translation. To this end, we propose ConST, a cross-modal contrastive learning method for end-to-end speech-to-text translation. We evaluate ConST and a variety of previous baselines on a popular benchmark MuST-C. Experiments show that the proposed ConST consistently outperforms the previous methods, and achieves an average BLEU of 29.4. The analysis further verifies that ConST indeed closes the representation gap of different modalities — its learned representation improves the accuracy of cross-modal speech-text retrieval from 4% to 88%. Code and models are available at https://github.com/ReneeYe/ConST.
How to find proper moments to generate partial sentence translation given a streaming speech input? Existing approaches waiting-and-translating for a fixed duration often break the acoustic units in speech, since the boundaries between acoustic units in speech are not even. In this paper, we propose MoSST, a simple yet effective method for translating streaming speech content. Given a usually long speech sequence, we develop an efficient monotonic segmentation module inside an encoder-decoder model to accumulate acoustic information incrementally and detect proper speech unit boundaries for the input in speech translation task. Experiments on multiple translation directions of the MuST-C dataset show that outperforms existing methods and achieves the best trade-off between translation quality (BLEU) and latency. Our code is available at https://github.com/dqqcasia/mosst.
How to learn a better speech representation for end-to-end speech-to-text translation (ST) with limited labeled data? Existing techniques often attempt to transfer powerful machine translation (MT) capabilities to ST, but neglect the representation discrepancy across modalities. In this paper, we propose the Speech-TExt Manifold Mixup (STEMM) method to calibrate such discrepancy. Specifically, we mix up the representation sequences of different modalities, and take both unimodal speech sequences and multimodal mixed sequences as input to the translation model in parallel, and regularize their output predictions with a self-learning framework. Experiments on MuST-C speech translation benchmark and further analysis show that our method effectively alleviates the cross-modal representation discrepancy, and achieves significant improvements over a strong baseline on eight translation directions.
This paper does not aim at introducing a novel model for document-level neural machine translation. Instead, we head back to the original Transformer model and hope to answer the following question: Is the capacity of current models strong enough for document-level translation? Interestingly, we observe that the original Transformer with appropriate training techniques can achieve strong results for document translation, even with a length of 2000 words. We evaluate this model and several recent approaches on nine document-level datasets and two sentence-level datasets across six languages. Experiments show that document-level Transformer models outperforms sentence-level ones and many previous methods in a comprehensive set of metrics, including BLEU, four lexical indices, three newly proposed assistant linguistic indicators, and human evaluation.
This report describes our VolcTrans system for the WMT22 shared task on large-scale multilingual machine translation. We participated in the unconstrained track which allows the use of external resources. Our system is a transformer-based multilingual model trained on data from multiple sources including the public training set from the data track, NLLB data provided by Meta AI, self-collected parallel corpora, and pseudo bitext from back-translation. Both bilingual and monolingual texts are cleaned by a series of heuristic rules. On the official test set, our system achieves 17.3 BLEU, 21.9 spBLEU, and 41.9 chrF2++ on average over all language pairs. Averaged inference speed is 11.5 sentences per second using a single Nvidia Tesla V100 GPU.
Existing multilingual machine translation approaches mainly focus on English-centric directions, while the non-English directions still lag behind. In this work, we aim to build a many-to-many translation system with an emphasis on the quality of non-English language directions. Our intuition is based on the hypothesis that a universal cross-language representation leads to better multilingual translation performance. To this end, we propose mRASP2, a training method to obtain a single unified multilingual translation model. mRASP2 is empowered by two techniques: a) a contrastive learning scheme to close the gap among representations of different languages, and b) data augmentation on both multiple parallel and monolingual data to further align token representations. For English-centric directions, mRASP2 achieves competitive or even better performance than a strong pre-trained model mBART on tens of WMT benchmarks. For non-English directions, mRASP2 achieves an improvement of average 10+ BLEU compared with the multilingual baseline
Multilingual neural machine translation aims at learning a single translation model for multiple languages. These jointly trained models often suffer from performance degradationon rich-resource language pairs. We attribute this degeneration to parameter interference. In this paper, we propose LaSS to jointly train a single unified multilingual MT model. LaSS learns Language Specific Sub-network (LaSS) for each language pair to counter parameter interference. Comprehensive experiments on IWSLT and WMT datasets with various Transformer architectures show that LaSS obtains gains on 36 language pairs by up to 1.2 BLEU. Besides, LaSS shows its strong generalization performance at easy adaptation to new language pairs and zero-shot translation. LaSS boosts zero-shot translation with an average of 8.3 BLEU on 30 language pairs. Codes and trained models are available at https://github.com/NLP-Playground/LaSS.
Recent work on non-autoregressive neural machine translation (NAT) aims at improving the efficiency by parallel decoding without sacrificing the quality. However, existing NAT methods are either inferior to Transformer or require multiple decoding passes, leading to reduced speedup. We propose the Glancing Language Model (GLM) for single-pass parallel generation models. With GLM, we develop Glancing Transformer (GLAT) for machine translation. With only single-pass parallel decoding, GLAT is able to generate high-quality translation with 8×-15× speedup. Note that GLAT does not modify the network architecture, which is a training method to learn word interdependency. Experiments on multiple WMT language directions show that GLAT outperforms all previous single pass non-autoregressive methods, and is nearly comparable to Transformer, reducing the gap to 0.25-0.9 BLEU points.
NeurST is an open-source toolkit for neural speech translation. The toolkit mainly focuses on end-to-end speech translation, which is easy to use, modify, and extend to advanced speech translation research and products. NeurST aims at facilitating the speech translation research for NLP researchers and building reliable benchmarks for this field. It provides step-by-step recipes for feature extraction, data preprocessing, distributed training, and evaluation. In this paper, we will introduce the framework design of NeurST and show experimental results for different benchmark datasets, which can be regarded as reliable baselines for future research. The toolkit is publicly available at https://github.com/bytedance/neurst and we will continuously update the performance of with other counterparts and studies at https://st-benchmark.github.io/.
This tutorial provides a comprehensive guide to make the most of pre-training for neural machine translation. Firstly, we will briefly introduce the background of NMT, pre-training methodology, and point out the main challenges when applying pre-training for NMT. Then we will focus on analysing the role of pre-training in enhancing the performance of NMT, how to design a better pre-training model for executing specific NMT tasks and how to better integrate the pre-trained model into NMT system. In each part, we will provide examples, discuss training techniques and analyse what is transferred when applying pre-training.
There are common semantics shared across text and images. Given a sentence in a source language, whether depicting the visual scene helps translation into a target language? Existing multimodal neural machine translation methods (MNMT) require triplets of bilingual sentence - image for training and tuples of source sentence - image for inference. In this paper, we propose ImagiT, a novel machine translation method via visual imagination. ImagiT first learns to generate visual representation from the source sentence, and then utilizes both source sentence and the “imagined representation” to produce a target translation. Unlike previous methods, it only needs the source sentence at the inference time. Experiments demonstrate that ImagiT benefits from visual imagination and significantly outperforms the text-only neural machine translation baselines. Further analysis reveals that the imagination process in ImagiT helps fill in missing information when performing the degradation strategy.
We propose to improve unsupervised neural machine translation with cross-lingual supervision (), which utilizes supervision signals from high resource language pairs to improve the translation of zero-source languages. Specifically, for training En-Ro system without parallel corpus, we can leverage the corpus from En-Fr and En-De to collectively train the translation from one language into many languages under one model. % is based on multilingual models which require no changes to the standard unsupervised NMT. Simple and effective, significantly improves the translation quality with a big margin in the benchmark unsupervised translation tasks, and even achieves comparable performance to supervised NMT. In particular, on WMT’14 -tasks achieves 37.6 and 35.18 BLEU score, which is very close to the large scale supervised setting and on WMT’16 -tasks achieves 35.09 BLEU score which is even better than the supervised Transformer baseline.
Automatic translation of dialogue texts is a much needed demand in many real life scenarios. However, the currently existing neural machine translation delivers unsatisfying results. In this paper, we conduct a deep analysis of a dialogue corpus and summarize three major issues on dialogue translation, including pronoun dropping (), punctuation dropping (), and typos (). In response to these challenges, we propose a joint learning method to identify omission and typo, and utilize context to translate dialogue utterances. To properly evaluate the performance, we propose a manually annotated dataset with 1,931 Chinese-English parallel utterances from 300 dialogues as a benchmark testbed for dialogue translation. Our experiments show that the proposed method improves translation quality by 3.2 BLEU over the baselines. It also elevates the recovery rate of omitted pronouns from 26.09% to 47.16%. We will publish the code and dataset publicly at https://xxx.xx.
Transformer and its variants have achieved great success in natural language processing. Since Transformer models are huge in size, serving these models is a challenge for real industrial applications. In this paper, we propose , a highly efficient inference library for models in the Transformer family. includes a series of GPU optimization techniques to both streamline the computation of Transformer layers and reduce memory footprint. supports models trained using PyTorch and Tensorflow. Experimental results on standard machine translation benchmarks show that achieves up to 14x speedup compared with TensorFlow and 1.4x speedup compared with , a concurrent CUDA implementation. The code will be released publicly after the review.
This paper describes the systems submitted to IWSLT 2021 by the Volctrans team. We participate in the offline speech translation and text-to-text simultaneous translation tracks. For offline speech translation, our best end-to-end model achieves 7.9 BLEU improvements over the benchmark on the MuST-C test set and is even approaching the results of a strong cascade solution. For text-to-text simultaneous translation, we explore the best practice to optimize the wait-k model. As a result, our final submitted systems exceed the benchmark at around 7 BLEU on the same latency regime. We release our code and model to facilitate both future research works and industrial applications.
This paper describes the Volctrans’ submission to the WMT21 news translation shared task for German->English translation. We build a parallel (i.e., non-autoregressive) translation system using the Glancing Transformer, which enables fast and accurate parallel decoding in contrast to the currently prevailing autoregressive models. To the best of our knowledge, this is the first parallel translation system that can be scaled to such a practical scenario like WMT competition. More importantly, our parallel translation system achieves the best BLEU score (35.0) on German->English translation task, outperforming all strong autoregressive counterparts.
Can pre-trained BERT for one language and GPT for another be glued together to translate texts? Self-supervised training using only monolingual data has led to the success of pre-trained (masked) language models in many NLP tasks. However, directly connecting BERT as an encoder and GPT as a decoder can be challenging in machine translation, for GPT-like models lack a cross-attention component that is needed in seq2seq decoders. In this paper, we propose Graformer to graft separately pre-trained (masked) language models for machine translation. With monolingual data for pre-training and parallel data for grafting training, we maximally take advantage of the usage of both types of data. Experiments on 60 directions show that our method achieves average improvements of 5.8 BLEU in x2en and 2.9 BLEU in en2x directions comparing with the multilingual Transformer of the same size.
Developing a unified multilingual model has been a long pursuing goal for machine translation. However, existing approaches suffer from performance degradation - a single multilingual model is inferior to separately trained bilingual ones on rich-resource languages. We conjecture that such a phenomenon is due to interference brought by joint training with multiple languages. To accommodate the issue, we propose CIAT, an adapted Transformer model with a small parameter overhead for multilingual machine translation. We evaluate CIAT on multiple benchmark datasets, including IWSLT, OPUS-100, and WMT. Experiments show that the CIAT consistently outperforms strong multilingual baselines on 64 of total 66 language directions, 42 of which have above 0.5 BLEU improvement.
This paper presents Self-correcting Encoding (Secoco), a framework that effectively deals with noisy input for robust neural machine translation by introducing self-correcting predictors. Different from previous robust approaches, Secoco enables NMT to explicitly correct noisy inputs and delete specific errors simultaneously with the translation decoding process. Secoco is able to achieve significant improvements over strong baselines on two real-world test sets and a benchmark WMT dataset with good interpretability. We will make our code and dataset publicly available soon.
How to effectively adapt neural machine translation (NMT) models according to emerging cases without retraining? Despite the great success of neural machine translation, updating the deployed models online remains a challenge. Existing non-parametric approaches that retrieve similar examples from a database to guide the translation process are promising but are prone to overfit the retrieved examples. However, non-parametric methods are prone to overfit the retrieved examples. In this work, we propose to learn Kernel-Smoothed Translation with Example Retrieval (KSTER), an effective approach to adapt neural machine translation models online. Experiments on domain adaptation and multi-domain machine translation datasets show that even without expensive retraining, KSTER is able to achieve improvement of 1.1 to 1.5 BLEU scores over the best existing online adaptation methods. The code and trained models are released at https://github.com/jiangqn/KSTER.
This paper describes our submission systems for VolcTrans for WMT20 shared news translation task. We participated in 8 translation directions. Our basic systems are based on Transformer (CITATION), into which we also employed new architectures (bigger or deeper Transformers, dynamic convolution). The final systems include text pre-process, subword(a.k.a. BPE(CITATION)), baseline model training, iterative back-translation, model ensemble, knowledge distillation and multilingual pre-training.
In this paper, we describe our submissions to the WMT20 shared task on parallel corpus filtering and alignment for low-resource conditions. The task requires the participants to align potential parallel sentence pairs out of the given document pairs, and score them so that low-quality pairs can be filtered. Our system, Volctrans, is made of two modules, i.e., a mining module and a scoring module. Based on the word alignment model, the mining mod- ule adopts an iterative mining strategy to extract latent parallel sentences. In the scoring module, an XLM-based scorer provides scores, followed by reranking mechanisms and ensemble. Our submissions outperform the baseline by 3.x/2.x and 2.x/2.x for km-en and ps-en on From Scratch/Fine-Tune conditions.
This paper proposes the building of Xiaomingbot, an intelligent, multilingual and multimodal software robot equipped with four inte- gral capabilities: news generation, news translation, news reading and avatar animation. Its system summarizes Chinese news that it automatically generates from data tables. Next, it translates the summary or the full article into multiple languages, and reads the multi- lingual rendition through synthesized speech. Notably, Xiaomingbot utilizes a voice cloning technology to synthesize the speech trained from a real person’s voice data in one input language. The proposed system enjoys several merits: it has an animated avatar, and is able to generate and read multilingual news. Since it was put into practice, Xiaomingbot has written over 600,000 articles, and gained over 150,000 followers on social media platforms.
Active learning for sentence understanding aims at discovering informative unlabeled data for annotation and therefore reducing the demand for labeled data. We argue that the typical uncertainty sampling method for active learning is time-consuming and can hardly work in real-time, which may lead to ineffective sample selection. We propose adversarial uncertainty sampling in discrete space (AUSDS) to retrieve informative unlabeled samples more efficiently. AUSDS maps sentences into latent space generated by the popular pre-trained language models, and discover informative unlabeled text samples for annotation via adversarial attack. The proposed approach is extremely efficient compared with traditional uncertainty sampling with more than 10x speedup. Experimental results on five datasets show that AUSDS outperforms strong baselines on effectiveness.
We investigate the following question for machine translation (MT): can we develop a single universal MT model to serve as the common seed and obtain derivative and improved models on arbitrary language pairs? We propose mRASP, an approach to pre-train a universal multilingual neural machine translation model. Our key idea in mRASP is its novel technique of random aligned substitution, which brings words and phrases with similar meanings across multiple languages closer in the representation space. We pre-train a mRASP model on 32 language pairs jointly with only public datasets. The model is then fine-tuned on downstream language pairs to obtain specialized MT models. We carry out extensive experiments on 42 translation directions across a diverse settings, including low, medium, rich resource, and as well as transferring to exotic language pairs. Experimental results demonstrate that mRASP achieves significant performance improvement compared to directly training on those target pairs. It is the first time to verify that multiple lowresource language pairs can be utilized to improve rich resource MT. Surprisingly, mRASP is even able to improve the translation quality on exotic languages that never occur in the pretraining corpus. Code, data, and pre-trained models are available at https://github.com/linzehui/mRASP.
Pre-trained contextual representations like BERT have achieved great success in natural language processing. However, the sentence embeddings from the pre-trained language models without fine-tuning have been found to poorly capture semantic meaning of sentences. In this paper, we argue that the semantic information in the BERT embeddings is not fully exploited. We first reveal the theoretical connection between the masked language model pre-training objective and the semantic similarity task theoretically, and then analyze the BERT sentence embeddings empirically. We find that BERT always induces a non-smooth anisotropic semantic space of sentences, which harms its performance of semantic similarity. To address this issue, we propose to transform the anisotropic sentence embedding distribution to a smooth and isotropic Gaussian distribution through normalizing flows that are learned with an unsupervised objective. Experimental results show that our proposed BERT-flow method obtains significant performance gains over the state-of-the-art sentence embeddings on a variety of semantic textual similarity tasks. The code is available at https://github.com/bohanli/BERT-flow.
Non-autoregressive translation models (NAT) have achieved impressive inference speedup. A potential issue of the existing NAT algorithms, however, is that the decoding is conducted in parallel, without directly considering previous context. In this paper, we propose an imitation learning framework for non-autoregressive machine translation, which still enjoys the fast translation speed but gives comparable translation performance compared to its auto-regressive counterpart. We conduct experiments on the IWSLT16, WMT14 and WMT16 datasets. Our proposed model achieves a significant speedup over the autoregressive models, while keeping the translation quality comparable to the autoregressive models. By sampling sentence length in parallel at inference time, we achieve the performance of 31.85 BLEU on WMT16 Ro→En and 30.68 BLEU on IWSLT16 En→De.
In this study, we first investigate a novel capsule network with dynamic routing for linear time Neural Machine Translation (NMT), referred as CapsNMT. CapsNMT uses an aggregation mechanism to map the source sentence into a matrix with pre-determined size, and then applys a deep LSTM network to decode the target sequence from the source representation. Unlike the previous work (CITATION) to store the source sentence with a passive and bottom-up way, the dynamic routing policy encodes the source sentence with an iterative process to decide the credit attribution between nodes from lower and higher layers. CapsNMT has two core properties: it runs in time that is linear in the length of the sequences and provides a more flexible way to aggregate the part-whole information of the source sentence. On WMT14 English-German task and a larger WMT14 English-French task, CapsNMT achieves comparable results with the Transformer system. To the best of our knowledge, this is the first work that capsule networks have been empirically investigated for sequence to sequence problems.
Neural machine translation with source-side attention have achieved remarkable performance. however, there has been little work exploring to attend to the target-side which can potentially enhance the memory capbility of NMT. We reformulate a Decoding History Enhanced Attention mechanism (DHEA) to render NMT model better at selecting both source-side and target-side information. DHA enables dynamic control of the ratios at which source and target contexts contribute to the generation of target words, offering a way to weakly induce structure relations among both source and target tokens. It also allows training errors to be directly back-propagated through short-cut connections and effectively alleviates the gradient vanishing problem. The empirical study on Chinese-English translation shows that our model with proper configuration can improve by 0:9 BLEU upon Transformer and the best reported results in the dataset. On WMT14 English-German task and a larger WMT14 English-French task, our model achieves comparable results with the state-of-the-art.
We participated in the WMT 2018 shared news translation task on English↔Chinese language pair. Our systems are based on attentional sequence-to-sequence models with some form of recursion and self-attention. Some data augmentation methods are also introduced to improve the translation performance. The best translation result is obtained with ensemble and reranking techniques. Our Chinese→English system achieved the highest cased BLEU score among all 16 submitted systems, and our English→Chinese system ranked the third out of 18 submitted systems.
Deep Neural Networks (DNNs) have provably enhanced the state-of-the-art Neural Machine Translation (NMT) with its capability in modeling complex functions and capturing complex linguistic structures. However NMT with deep architecture in its encoder or decoder RNNs often suffer from severe gradient diffusion due to the non-linear recurrent activations, which often makes the optimization much more difficult. To address this problem we propose a novel linear associative units (LAU) to reduce the gradient propagation path inside the recurrent unit. Different from conventional approaches (LSTM unit and GRU), LAUs uses linear associative connections between input and output of the recurrent unit, which allows unimpeded information flow through both space and time The model is quite simple, but it is surprisingly effective. Our empirical study on Chinese-English translation shows that our model with proper configuration can improve by 11.7 BLEU upon Groundhog and the best reported on results in the same setting. On WMT14 English-German task and a larger WMT14 English-French task, our model achieves comparable results with the state-of-the-art.
This paper proposes three distortion models to explicitly incorporate the word reordering knowledge into attention-based Neural Machine Translation (NMT) for further improving translation performance. Our proposed models enable attention mechanism to attend to source words regarding both the semantic requirement and the word reordering penalty. Experiments on Chinese-English translation show that the approaches can improve word alignment quality and achieve significant translation improvements over a basic attention-based NMT by large margins. Compared with previous works on identical corpora, our system achieves the state-of-the-art performance on translation quality.