With the rise of globalisation, code-switching (CSW) has become a ubiquitous part of multilingual conversation, posing new challenges for natural language processing (NLP), especially in Grammatical Error Correction (GEC). This work explores the complexities of applying GEC systems to CSW texts. Our objectives include evaluating the performance of state-of-the-art GEC systems on an authentic CSW dataset from English as a Second Language (ESL) learners, exploring synthetic data generation as a solution to data scarcity, and developing a model capable of correcting grammatical errors in monolingual and CSW texts. We generated synthetic CSW GEC data, resulting in one of the first substantial datasets for this task, and showed that a model trained on this data is capable of significant improvements over existing systems. This work targets ESL learners, aiming to provide educational technologies that aid in the development of their English grammatical correctness without constraining their natural multilingualism.
Generating accurate SQL queries for user questions (text-to-SQL) has been a long-standing challenge since it requires a deep understanding of both the user’s question and the corresponding database schema in order to retrieve the desired content accurately. Existing methods rely on the comprehensive capability of large language models (LLMs) to generate the SQL. However, some necessary knowledge is not explicitly included in the database schema and user question or has been learned by LLMs. Thus, the generated SQL of the knowledge-insufficient questions may be inaccurate, negatively influencing the text-to-SQL models’ performance and robustness. To address this challenge, we propose the Knowledge-to-SQL framework, which employs tailored Data Expert LLM (DELLM) to provide helpful knowledge for all text-to-SQL models. Specifically, we introduce the detailed implementation of DELLM regarding table reading and the basic fine-tuning process. We further propose a Preference Learning via Database Feedback (PLDBF) strategy, refining the DELLM to generate more helpful knowledge for LLMs. Extensive experiments verify that DELLM can enhance the state-of-the-art approaches for text-to-SQL tasks. The corresponding code of DELLM is released for further research.
Thanks to recent advances in generative AI, we are able to prompt large language models (LLMs) to produce texts which are fluent and grammatical. In addition, it has been shown that we can elicit attempts at grammatical error correction (GEC) from LLMs when prompted with ungrammatical input sentences. We evaluate how well LLMs can perform at GEC by measuring their performance on established benchmark datasets. We go beyond previous studies, which only examined GPT* models on a selection of English GEC datasets, by evaluating seven open-source and three commercial LLMs on four established GEC benchmarks. We investigate model performance and report results against individual error types. Our results indicate that LLMs do not always outperform supervised English GEC models except in specific contexts – namely commercial LLMs on benchmarks annotated with fluency corrections as opposed to minimal edits. We find that several open-source models outperform commercial ones on minimal edit benchmarks, and that in some settings zero-shot prompting is just as competitive as few-shot prompting.
The diffusion model, a new generative modeling paradigm, has achieved great success in image, audio, and video generation.However, considering the discrete categorical nature of the text, it is not trivial to extend continuous diffusion models to natural language. In this work, we propose SeqDiffuSeq, a text diffusion model, to approach sequence-to-sequence text generation with an encoder-decoder Transformer architecture.To improve the generation performance, SeqDiffuSeq is equipped with the self-conditioning technique and our newly proposed adaptive noise schedule technique. Self-conditioning enables SeqDiffuSeq to better use the predicted sequence information during the generation process.The adaptive noise schedule balances the difficulty of denoising across time steps at the token level.Experiment results illustrate the improved performance on five sequence-to-sequence generation tasks compared to other diffusion-based models regarding text quality and inference time.
The complementary potential of Large Language Models (LLM) assumes off-the-shelf LLMs have heterogeneous expertise in a wide range of domains and tasks so that an ensemble of LLMs can achieve consistently better performance. Existing ensemble methods for LLMs mainly focus on reward model ranking of outputs, leading to significant computation overhead. To combat this issue, we revisit the complementary potential of LLMs and further elaborate on it by mining latent expertise with off-the-shelf reward models. We propose ZOOTER, a reward-guided routing method distilling rewards on training queries to train a routing function, which can precisely distribute each query to the LLM with expertise about it. We also integrate a tag-based label enhancement to mitigate noise from uncertainty when using rewards as silver supervision. ZOOTER shows computation efficiency in inference as it only introduces minor computation overhead of a routing function compared with reward model ranking methods. We evaluate ZOOTER on a comprehensive benchmark collection with 26 subsets in different domains and tasks. ZOOTER outperforms the best single model on average and ranks first on 44% of tasks, even surpassing multiple reward model ranking methods.
This paper presents a multi-pipeline Japanese-to-English machine translation (MT) system designed to address the challenge of translating repeated elements from Japanese into fluent and lexically diverse English. The system is developed as part of the Non-Repetitive Translation Task at WMT24, which focuses on minimizing redundancy while maintaining high translation quality. Our approach utilizes MeCab, the de facto NLP tool for Japanese, for the identification of repeated elements, and Claude Sonnet 3.5, a large language model (LLM), for translation and proofreading. The system effectively accomplishes the shared task by identifying and translating in a diversified manner 89.79% of the 470 repeated instances in the testing dataset, and achieving an average translation quality score of 4.60 out of 5, significantly surpassing the baseline score of 3.88. Analysis also revealed the challenges encountered, particularly in identifying standalone noun-suffix elements and occasional cases of consistent translations or mistranslations.
Large language models (LLMs) with enormous pre-training tokens and parameters emerge diverse abilities, including math reasoning, codegeneration, and instruction following. These abilities are further enhanced by supervised fine-tuning (SFT). While the open-source community has explored ad-hoc SFT for enhancing individual capabilities, proprietary LLMs exhibit versatility across various skills. Therefore, understanding the facilitation of multiple abilities via SFT is paramount. In this study, we specificially focuses on the interplay of data composition between mathematical reasoning, code generation, and general human-aligning abilities during SFT. We propose four intriguing research questions to explore the association between model performance and various factors including data amount, composition ratio, model size and SFT strategies. Our experiments reveal that distinct capabilities scale differently and larger models generally show superior performance with same amount of data. Mathematical reasoning and code generation consistently improve with increasing data amount, whereas general abilities plateau after roughly a thousand samples. Moreover, we observe data composition appears to enhance various abilities under limited data conditions, yet can lead to performance conflicts when data is plentiful. Our findings also suggest the amount of composition data influences performance more than the composition ratio. In analysis of SFT strategies, we find that sequentially learning multiple skills risks catastrophic forgetting. Our proposed Dual-stage Mixed Fine-tuning (DMT) strategy offers a promising solution to learn multiple abilities with different scaling patterns.
In math reasoning with large language models (LLMs), fine-tuning data augmentation by query evolution and diverse reasoning paths is empirically verified effective, profoundly narrowing the gap between open-sourced LLMs and cutting-edge proprietary LLMs. In this paper, we conduct an investigation for such data augmentation in math reasoning and are intended to answer: (1) What strategies of data augmentation are more effective; (2) What is the scaling relationship between the amount of augmented data and model performance; and (3) Can data augmentation incentivize generalization to out-of-domain mathematical reasoning tasks?To this end, we create two new dataset AugGSM8K and AugMATH, by complicating and diversifying the queries and sampling multiple reasoning paths from GSM8K and MATH.We obtained a series of LLMs called MuggleMath by fine-tuning LLaMA models on AugGSM8K and AugMATH. MuggleMath substantially achieves new state-of-the-art on GSM8K and MATH.A log-linear relationship and a segmented log-linear are presented between MuggleMath’s performance and the amount of augmented data on GSM8K and MATH, respectively.We also find that it is weak in out-of-domain math reasoning generalization from AugGSM8K to MATH and from AugMATH to GSM8K, which suggests that augmenting queries that cover a broader range of subjects is more beneficial for generalization.
Large language models (LLMs) exhibit exceptional performance in language tasks, yet their auto-regressive inference is limited due to high computational requirements and is sub-optimal due to the exposure bias. Inspired by speculative decoding and contrastive decoding, we introduce Speculative Contrastive Decoding (SCD), a straightforward yet powerful decoding approach that leverages predictions from smaller language models (LMs) to achieve both decoding acceleration and quality improvement. Extensive evaluations and analyses on four diverse language tasks demonstrate the effectiveness of SCD, showing that decoding efficiency and quality can compatibly benefit from one smaller LM.
Lexical Simplification (LS) aims to simplify text at the lexical level. Existing methods rely heavily on annotated data, making it challenging to apply in low-resource scenarios. In this paper, we propose a novel LS method without parallel corpora. This method employs an Adversarial Editing System with guidance from a confusion loss and an invariance loss to predict lexical edits in the original sentences. Meanwhile, we introduce an innovative LLM-enhanced loss to enable the distillation of knowledge from Large Language Models (LLMs) into a small-size LS system. From that, complex words within sentences are masked and a Difficulty-aware Filling module is crafted to replace masked positions with simpler words. At last, extensive experimental results and analyses on three benchmark LS datasets demonstrate the effectiveness of our proposed method.
In this study, we evaluated the performance of the state-of-the-art sequence tagging grammar error detection and correction model (SeqTagger) using Japanese university students’ writing samples. With an automatic annotation toolkit, ERRANT, we first evaluated SeqTagger’s performance on error correction with human expert correction as the benchmark. Then a human-annotated approach was adopted to evaluate Seqtagger’s performance in error detection using a subset of the writing dataset. Results indicated a precision of 63.66% and a recall of 20.19% for error correction in the full dataset. For the subset, after manual exclusion of irrelevant errors such as semantic and mechanical ones, the model shows an adjusted precision of 97.98% and an adjusted recall of 42.98% for error detection, indicating the model’s high accuracy but also its conservativeness. Thematic analysis on errors undetected by the model revealed that determiners and articles, especially the latter, were predominant. Specifically, in terms of context-independent errors, the model occasionally overlooked basic ones and faced challenges with overly erroneous or complex structures. Meanwhile, context-dependent errors, notably those related to tense and noun number, as well as those possibly influenced by the students’ first language (L1), remained particularly challenging.
Code-switching (CSW) is a common phenomenon among multilingual speakers where multiple languages are used in a single discourse or utterance. Mixed language utterances may still contain grammatical errors however, yet most existing Grammar Error Correction (GEC) systems have been trained on monolingual data and not developed with CSW in mind. In this work, we conduct the first exploration into the use of GEC systems on CSW text. Through this exploration, we propose a novel method of generating synthetic CSW GEC datasets by translating different spans of text within existing GEC corpora. We then investigate different methods of selecting these spans based on CSW ratio, switch-point factor and linguistic constraints, and identify how they affect the performance of GEC systems on CSW text. Our best model achieves an average increase of 1.57 F0.5 across 3 CSW test sets (English-Chinese, English-Korean and English-Japanese) without affecting the model’s performance on a monolingual dataset. We furthermore discovered that models trained on one CSW language generalise relatively well to other typologically similar CSW languages.
The intelligent chatbot takes dialogue sentiment prediction as the core, and it has to tackle long dialogue sentiment prediction problems in many real-world applications. Current state-of-the-art methods usually employ attention-based dialogue sentiment prediction models. However, as the conversation progresses, more topics are involved and the changes in sentiments become more frequent, which leads to a sharp decline in the accuracy and efficiency of the current methods. Therefore, we propose a Multi-round Long Dialogue Sentiment Prediction based on Multidimensional Attention (MLDSP-MA), which can focus on different topics. In particular, MLSDP-MA leverages a sliding window to capture different topics and traverses all historical dialogues. In each sliding window, the contextual dependency, sentiment persistence, and sentiment infectivity are characterized, and local attention cross fusion is performed. To learn dialogue sentiment globally, global attention is proposed to iteratively learn comprehensive sentiments from historical dialogues, and finally integrate with local attention. We conducted extensive experimental research on publicly available dialogue datasets. The experimental results show that, compared to the current state-of-the-art methods, our model improves by 3.5% in accuracy and 5.7% in Micro-F1 score.
Language models with the Transformers structure have shown great performance in natural language processing. However, there still poses problems when fine-tuning pre-trained language models on downstream tasks, such as over-fitting or representation collapse. In this work, we propose HyPe, a simple yet effective fine-tuning technique to alleviate such problems by perturbing hidden representations of Transformers layers. Unlike previous works that only add noise to inputs or parameters, we argue that the hidden representations of Transformers layers convey more diverse and meaningful language information. Therefore, making the Transformers layers more robust to hidden representation perturbations can further benefit the fine-tuning of PLMs en bloc. We conduct extensive experiments and analyses on GLUE and other natural language inference datasets. Results demonstrate that HyPe outperforms vanilla fine-tuning and enhances generalization of hidden representations from different layers. In addition, HyPe acquires negligible computational overheads, and is better than and compatible with previous state-of-the-art fine-tuning techniques.
Biomedical entity linking (EL) consists of named entity recognition (NER) and named entity disambiguation (NED). EL models are trained on corpora labeled by a predefined KB. However, it is a common scenario that only entities within a subset of the KB are precious to stakeholders. We name this scenario partial knowledge base inference; training an EL model with one KB and inferring on the part of it without further training. In this work, we give a detailed definition and evaluation procedures for this practically valuable but significantly understudied scenario and evaluate methods from three representative EL paradigms. We construct partial KB inference benchmarks and witness a catastrophic degradation in EL performance due to dramatically precision drop. Our findings reveal these EL paradigms can not correctly handle unlinkable mentions (NIL), so they are not robust to partial KB inference. We also propose two simple-and-effective redemption methods to combat the NIL issue with little computational overhead.
We extend a current sequence-tagging approach to Grammatical Error Correction (GEC) by introducing specialised tags for spelling correction and morphological inflection using the SymSpell and LemmInflect algorithms. Our approach improves generalisation: the proposed new tagset allows a smaller number of tags to correct a larger range of errors. Our results show a performance improvement both overall and in the targeted error categories. We further show that ensembles trained with our new tagset outperform those trained with the baseline tagset on the public BEA benchmark.
This paper presents an investigation into the differences between processing monolingual input and code-switching (CSW) input in the context of machine translation (MT). Specifically, we compare the performance of three MT systems (Google, mBART-50 and M2M-100-big) in terms of their ability to translate monolingual Vietnamese, a low-resource language, and Vietnamese-English CSW respectively. To our knowledge, this is the first study to systematically analyse what might happen when multilingual MT systems are exposed to CSW data using both automatic and human metrics. We find that state-of-the-art neural translation systems not only achieve higher scores on automatic metrics when processing CSW input (compared to monolingual input), but also produce translations that are consistently rated as more semantically faithful by humans. We further suggest that automatic evaluation alone is insufficient for evaluating the translation of CSW input. Our findings establish a new benchmark that offers insights into the relationship between MT and CSW.
Large Language Models (LLMs) evaluation is a patchy and inconsistent landscape, and it is becoming clear that the quality of automatic evaluation metrics is not keeping up with the pace of development of generative models. We aim to improve the understanding of current models’ performance by providing a preliminary and hybrid evaluation on a range of open and closed-source generative LLMs on three NLP benchmarks: text summarisation, text simplification and grammatical error correction (GEC), using both automatic and human evaluation. We also explore the potential of the recently released GPT-4 to act as an evaluator. We find that ChatGPT consistently outperforms many other popular models according to human reviewers on the majority of metrics, while scoring much more poorly when using classic automatic evaluation metrics. We also find that human reviewers rate the gold reference as much worse than the best models’ outputs, indicating the poor quality of many popular benchmarks. Finally, we find that GPT-4 is capable of ranking models’ outputs in a way which aligns reasonably closely to human judgement despite task-specific variations, with a lower alignment in the GEC task.
Grammatical Error Correction (GEC) is the task of automatically detecting and correcting errors in text. The task not only includes the correction of grammatical errors, such as missing prepositions and mismatched subject–verb agreement, but also orthographic and semantic errors, such as misspellings and word choice errors, respectively. The field has seen significant progress in the last decade, motivated in part by a series of five shared tasks, which drove the development of rule-based methods, statistical classifiers, statistical machine translation, and finally neural machine translation systems, which represent the current dominant state of the art. In this survey paper, we condense the field into a single article and first outline some of the linguistic challenges of the task, introduce the most popular datasets that are available to researchers (for both English and other languages), and summarize the various methods and techniques that have been developed with a particular focus on artificial error generation. We next describe the many different approaches to evaluation as well as concerns surrounding metric reliability, especially in relation to subjective human judgments, before concluding with an overview of recent progress and suggestions for future work and remaining challenges. We hope that this survey will serve as a comprehensive resource for researchers who are new to the field or who want to be kept apprised of recent developments.
Prompt tuning offers an efficient approach to domain adaptation for pretrained language models, which predominantly focus on masked language modeling or generative objectives. However, the potential of discriminative language models in biomedical tasks remains underexplored.To bridge this gap, we develop BioDLM, a method tailored for biomedical domain adaptation of discriminative language models that incorporates prompt-based continual pretraining and prompt tuning for downstream tasks. BioDLM aims to maximize the potential of discriminative language models in low-resource scenarios by reformulating these tasks as span-level corruption detection, thereby enhancing performance on domain-specific tasks and improving the efficiency of continual pertaining. In this way, BioDLM provides a data-efficient domain adaptation method for discriminative language models, effectively enhancing performance on discriminative tasks within the biomedical domain.
This paper describes the results of the first shared task on generation of teacher responses in educational dialogues. The goal of the task was to benchmark the ability of generative language models to act as AI teachers, replying to a student in a teacher-student dialogue. Eight teams participated in the competition hosted on CodaLab and experimented with a wide variety of state-of-the-art models, including Alpaca, Bloom, DialoGPT, DistilGPT-2, Flan-T5, GPT- 2, GPT-3, GPT-4, LLaMA, OPT-2.7B, and T5- base. Their submissions were automatically scored using BERTScore and DialogRPT metrics, and the top three among them were further manually evaluated in terms of pedagogical ability based on Tack and Piech (2022). The NAISTeacher system, which ranked first in both automated and human evaluation, generated responses with GPT-3.5 Turbo using an ensemble of prompts and DialogRPT-based ranking of responses for given dialogue contexts. Despite promising achievements of the participating teams, the results also highlight the need for evaluation metrics better suited to educational contexts.
This paper presents the ADAIO team’s system entry in the Building Educational Applications (BEA) 2023 Shared Task on Generating AI Teacher Responses in Educational Dialogues. The task aims to assess the performance of state-of-the-art generative models as AI teachers in producing suitable responses within a student-teacher dialogue. Our system comprises evaluating various baseline models using OpenAI GPT-3 and designing diverse prompts to prompt the OpenAI models for teacher response generation. After the challenge, our system achieved second place by employing a few-shot prompt-based approach with the OpenAI text-davinci-003 model. The results highlight the few-shot learning capabilities of large-language models, particularly OpenAI’s GPT-3, in the role of AI teachers.
Entities lie in the heart of biomedical natural language understanding, and the biomedical entity linking (EL) task remains challenging due to the fine-grained and diversiform concept names. Generative methods achieve remarkable performances in general domain EL with less memory usage while requiring expensive pre-training. Previous biomedical EL methods leverage synonyms from knowledge bases (KB) which is not trivial to inject into a generative method. In this work, we use a generative approach to model biomedical EL and propose to inject synonyms knowledge in it. We propose KB-guided pre-training by constructing synthetic samples with synonyms and definitions from KB and require the model to recover concept names. We also propose synonyms-aware fine-tuning to select concept names for training, and propose decoder prompt and multi-synonyms constrained prefix tree for inference. Our method achieves state-of-the-art results on several biomedical EL tasks without candidate selection which displays the effectiveness of proposed pre-training and fine-tuning strategies. The source code is available at https://github.com/Yuanhy1997/GenBioEL.
Term clustering is important in biomedical knowledge graph construction. Using similarities between terms embedding is helpful for term clustering. State-of-the-art term embeddings leverage pretrained language models to encode terms, and use synonyms and relation knowledge from knowledge graphs to guide contrastive learning. These embeddings provide close embeddings for terms belonging to the same concept. However, from our probing experiments, these embeddings are not sensitive to minor textual differences which leads to failure for biomedical term clustering. To alleviate this problem, we adjust the sampling strategy in pretraining term embeddings by providing dynamic hard positive and negative samples during contrastive learning to learn fine-grained representations which result in better biomedical term clustering. We name our proposed method as CODER++, and it has been applied in clustering biomedical concepts in the newly released Biomedical Knowledge Graph named BIOS.
Pretrained language models have served as important backbones for natural language processing. Recently, in-domain pretraining has been shown to benefit various domain-specific downstream tasks. In the biomedical domain, natural language generation (NLG) tasks are of critical importance, while understudied. Approaching natural language understanding (NLU) tasks as NLG achieves satisfying performance in the general domain through constrained language generation or language prompting. We emphasize the lack of in-domain generative language models and the unsystematic generative downstream benchmarks in the biomedical domain, hindering the development of the research community. In this work, we introduce the generative language model BioBART that adapts BART to the biomedical domain. We collate various biomedical language generation tasks including dialogue, summarization, entity linking, and named entity recognition. BioBART pretrained on PubMed abstracts has enhanced performance compared to BART and set strong baselines on several tasks. Furthermore, we conduct ablation studies on the pretraining tasks for BioBART and find that sentence permutation has negative effects on downstream tasks.
Artificial Intelligence (AI), along with the recent progress in biomedical language understanding, is gradually offering great promise for medical practice. With the development of biomedical language understanding benchmarks, AI applications are widely used in the medical field. However, most benchmarks are limited to English, which makes it challenging to replicate many of the successes in English for other languages. To facilitate research in this direction, we collect real-world biomedical data and present the first Chinese Biomedical Language Understanding Evaluation (CBLUE) benchmark: a collection of natural language understanding tasks including named entity recognition, information extraction, clinical diagnosis normalization, single-sentence/sentence-pair classification, and an associated online platform for model evaluation, comparison, and analysis. To establish evaluation on these tasks, we report empirical results with the current 11 pre-trained Chinese models, and experimental results show that state-of-the-art neural models perform by far worse than the human ceiling.
Automatic ICD coding is defined as assigning disease codes to electronic medical records (EMRs).Existing methods usually apply label attention with code representations to match related text snippets. Unlike these works that model the label with the code hierarchy or description, we argue that the code synonyms can provide more comprehensive knowledge based on the observation that the code expressions in EMRs vary from their descriptions in ICD. By aligning codes to concepts in UMLS, we collect synonyms of every code. Then, we propose a multiple synonyms matching network to leverage synonyms for better code representation learning, and finally help the code classification. Experiments on the MIMIC-III dataset show that our proposed method outperforms previous state-of-the-art methods.
Nested entities are observed in many domains due to their compositionality, which cannot be easily recognized by the widely-used sequence labeling framework.A natural solution is to treat the task as a span classification problem. To learn better span representation and increase classification performance, it is crucial to effectively integrate heterogeneous factors including inside tokens, boundaries, labels, and related spans which could be contributing to nested entities recognition. To fuse these heterogeneous factors, we propose a novel triaffine mechanism including triaffine attention and scoring.Triaffine attention uses boundaries and labels as queries and uses inside tokens and related spans as keys and values for span representations.Triaffine scoring interacts with boundaries and span representations for classification. Experiments show that our proposed method outperforms previous span-based methods, achieves the state-of-the-art F1 scores on nested NER datasets GENIA and KBP2017, and shows comparable results on ACE2004 and ACE2005.
Grammatical error correction (GEC) is the task of automatically correcting errors in text. It has mainly been developed to assist language learning, but can also be applied to native text. This paper reports on preliminary work in improving GEC for multiword expression (MWE) error correction. We propose two systems which incorporate MWE information in two different ways: one is a multi-encoder decoder system which encodes MWE tags in a second encoder, and the other is a BART pre-trained transformer-based system that encodes MWE representations using special tokens. We show improvements in correcting specific types of verbal MWEs based on a modified version of a standard GEC evaluation approach.
This paper describes our submission to the SemEval-2021 shared task on Lexical Complexity Prediction. We approached it as a regression problem and present an ensemble combining four systems, one feature-based and three neural with fine-tuning, frequency pre-training and multi-task learning, achieving Pearson scores of 0.8264 and 0.7556 on the trial and test sets respectively (sub-task 1). We further present our analysis of the results and discuss our findings.
This paper describes the system of the Cambridge team submitted to the SemEval-2021 shared task on Multilingual and Cross-lingual Word-in-Context Disambiguation. Building on top of a pre-trained masked language model, our system is first pre-trained on out-of-domain data, and then fine-tuned on in-domain data. We demonstrate the effectiveness of the proposed two-step training strategy and the benefits of data augmentation from both existing examples and new resources. We further investigate different representations and show that the addition of distance-based features is helpful in the word-in-context disambiguation task. Our system yields highly competitive results in the cross-lingual track without training on any cross-lingual data; and achieves state-of-the-art results in the multilingual track, ranking first in two languages (Arabic and Russian) and second in French out of 171 submitted systems.
Pretrained language models have shown success in many natural language processing tasks. Many works explore to incorporate the knowledge into the language models. In the biomedical domain, experts have taken decades of effort on building large-scale knowledge bases. For example, UMLS contains millions of entities with their synonyms and defines hundreds of relations among entities. Leveraging this knowledge can benefit a variety of downstream tasks such as named entity recognition and relation extraction. To this end, we propose KeBioLM, a biomedical pretrained language model that explicitly leverages knowledge from the UMLS knowledge bases. Specifically, we extract entities from PubMed abstracts and link them to UMLS. We then train a knowledge-aware language model that firstly applies a text-only encoding layer to learn entity representation and then applies a text-entity fusion encoding to aggregate entity representation. In addition, we add two training objectives as entity detection and entity linking. Experiments on the named entity recognition and relation extraction tasks from the BLURB benchmark demonstrate the effectiveness of our approach. Further analysis on a collected probing dataset shows that our model has better ability to model medical knowledge.
Document-level context can provide valuable information in grammatical error correction (GEC), which is crucial for correcting certain errors and resolving inconsistencies. In this paper, we investigate context-aware approaches and propose document-level GEC systems. Additionally, we employ a three-step training strategy to benefit from both sentence-level and document-level data. Our system outperforms previous document-level and all other NMT-based single-model systems, achieving state of the art on a common test set.
In this paper, we show how a multi-class grammatical error detection (GED) system can be used to improve grammatical error correction (GEC) for English. Specifically, we first develop a new state-of-the-art binary detection system based on pre-trained ELECTRA, and then extend it to multi-class detection using different error type tagsets derived from the ERRANT framework. Output from this detection system is used as auxiliary input to fine-tune a novel encoder-decoder GEC model, and we subsequently re-rank the N-best GEC output to find the hypothesis that most agrees with the GED output. Results show that fine-tuning the GEC system using 4-class GED produces the best model, but re-ranking using 55-class GED leads to the best performance overall. This suggests that different multi-class GED systems benefit GEC in different ways. Ultimately, our system outperforms all other previous work that combines GED and GEC, and achieves a new single-model NMT-based state of the art on the BEA-test benchmark.
In this paper, we describe our submission to the BEA 2019 shared task on grammatical error correction. We present a system pipeline that utilises both error detection and correction models. The input text is first corrected by two complementary neural machine translation systems: one using convolutional networks and multi-task learning, and another using a neural Transformer-based system. Training is performed on publicly available data, along with artificial examples generated through back-translation. The n-best lists of these two machine translation systems are then combined and scored using a finite state transducer (FST). Finally, an unsupervised re-ranking system is applied to the n-best output of the FST. The re-ranker uses a number of error detection features to re-rank the FST n-best list and identify the final 1-best correction hypothesis. Our system achieves 66.75% F 0.5 on error correction (ranking 4th), and 82.52% F 0.5 on token-level error detection (ranking 2nd) in the restricted track of the shared task.
We describe a deployed scalable system for organizing published scientific literature into a heterogeneous graph to facilitate algorithmic manipulation and discovery. The resulting literature graph consists of more than 280M nodes, representing papers, authors, entities and various interactions between them (e.g., authorships, citations, entity mentions). We reduce literature graph construction into familiar NLP tasks (e.g., entity extraction and linking), point out research challenges due to differences from standard formulations of these tasks, and report empirical results for each task. The methods described in this paper are used to enable semantic features in www.semanticscholar.org.
This paper describes our use of two recurrent neural network sequence models: sequence labelling and sequence-to-sequence models, for the prediction of future learner errors in our submission to the 2018 Duolingo Shared Task on Second Language Acquisition Modeling (SLAM). We show that these two models capture complementary information as combining them improves performance. Furthermore, the same network architecture and group of features can be used directly to build competitive prediction models in all three language tracks, demonstrating that our approach generalises well across languages.
We propose an approach to N-best list reranking using neural sequence-labelling models. We train a compositional model for error detection that calculates the probability of each token in a sentence being correct or incorrect, utilising the full sentence as context. Using the error detection model, we then re-rank the N best hypotheses generated by statistical machine translation systems. Our approach achieves state-of-the-art results on error correction for three different datasets, and it has the additional advantage of only using a small set of easily computed features that require no linguistic input.
Shortage of available training data is holding back progress in the area of automated error detection. This paper investigates two alternative methods for artificially generating writing errors, in order to create additional resources. We propose treating error generation as a machine translation task, where grammatically correct text is translated to contain errors. In addition, we explore a system for extracting textual patterns from an annotated corpus, which can then be used to insert errors into grammatically correct sentences. Our experiments show that the inclusion of artificially generated errors significantly improves error detection accuracy on both FCE and CoNLL 2014 datasets.