Recent efforts to address hallucinations in Large Language Models (LLMs) have focused on attributed text generation, which supplements generated texts with citations of supporting sources for post-generation fact-checking and corrections. Yet, these citations often point to entire documents or paragraphs, burdening users with extensive verification work. In this paper, we introduce a locally-attributable text generation approach, prioritizing concise attributions. Our method, named “Attribute First, then Generate“, breaks down the conventional end-to-end generation process into three intuitive steps: content selection, sentence planning, and sequential sentence generation. By initially identifying relevant source segments (“select first“) and then conditioning the generation process on them (“then generate“), we ensure these segments also act as the output’s fine-grained attributions (“select“ becomes “attribute“). Tested on Multi-document Summarization and Long-form Question-answering, our method not only yields more concise citations than the baselines but also maintains - and in some cases enhances - both generation quality and attribution accuracy. Furthermore, it significantly reduces the time required for fact verification by human assessors.
Detecting semantic arguments of a predicate word has been conventionally modeled as a sentence-level task. The typical reader, however, perfectly interprets predicate-argument relations in a much wider context than just the sentence where the predicate was evoked. In this work, we reformulate the problem of argument detection through textual entailment to capture semantic relations across sentence boundaries. We propose a method that tests whether some semantic relation can be inferred from a full passage by first encoding it into a simple and standalone proposition and then testing for entailment against the passage. Our method does not require direct supervision, which is generally absent due to dataset scarcity, but instead builds on existing NLI and sentence-level SRL resources. Such a method can potentially explicate pragmatically understood relations into a set of explicit sentences. We demonstrate it on a recent document-level benchmark, outperforming some supervised methods and contemporary language models.
Improvements in language models’ capabilities have pushed their applications towards longer contexts, making long-context evaluation and development an active research area. However, many disparate use-cases are grouped together under the umbrella term of “long-context”, defined simply by the total length of the model’s input, including - for example - Needle-in-a-Haystack tasks, book summarization, and information aggregation. Given their varied difficulty, in this position paper we argue that conflating different tasks by their context length is unproductive. As a community, we require a more precise vocabulary to understand what makes long-context tasks similar or different. We propose to unpack the taxonomy of long-context based on the properties that make them more difficult with longer contexts. We propose two orthogonal axes of difficulty: (I) Diffusion: How hard is it to find the necessary information in the context? (II) Scope: How much necessary information is there to find? We survey the literature on long-context, provide justification for this taxonomy as an informative descriptor, and situate the literature with respect to it. We conclude that the most difficult and interesting settings, whose necessary information is very long and highly diffused within the input, is severely under-explored. By using a descriptive vocabulary and discussing the relevant properties of difficulty in long-context, we can implement more informed research in this area. We call for a careful design of tasks and benchmarks with distinctly long context, taking into account the characteristics that make it qualitatively different from shorter context.
Grounded text generation, encompassing tasks such as long-form question-answering and summarization, necessitates both content selection and content consolidation. Current end-to-end methods are difficult to control and interpret due to their opaqueness.Accordingly, recent works have proposed a modular approach, with separate components for each step. Specifically, we focus on the second subtask, of generating coherent text given pre-selected content in a multi-document setting. Concretely, we formalize Fusion-in-Context (FiC) as a standalone task, whose input consists of source texts with highlighted spans of targeted content. A model then needs to generate a coherent passage that includes all and only the target information.Our work includes the development of a curated dataset of 1000 instances in the reviews domain, alongside a novel evaluation framework for assessing the faithfulness and coverage of highlights, which strongly correlate to human judgment. Several baseline models exhibit promising outcomes and provide insightful analyses.This study lays the groundwork for further exploration of modular text generation in the multi-document setting, offering potential improvements in the quality and reliability of generated content. Our benchmark, FuseReviews, including the dataset, evaluation framework, and designated leaderboard, can be found at https://fusereviews.github.io/.
Multi-document summarization (MDS) is a challenging task, often decomposed to subtasks of salience and redundancy detection, followed by text generation.In this context, alignment of corresponding sentences between a reference summary and its source documents has been leveraged to generate training data for some of the component tasks. Yet, this enabling alignment step has usually been applied heuristically on the sentence level on a limited number of subtasks.In this paper, we propose extending the summary-source alignment framework by (1) applying it at the more fine-grained proposition span level, (2) annotating alignment manually in a multi-document setup, and (3) revealing the great potential of summary-source alignments to yield several datasets for at least six different tasks. Specifically, for each of the tasks, we release a manually annotated test set that was derived automatically from the alignment annotation. We also release development and train sets in the same way, but from automatically derived alignments.Using the datasets, each task is demonstrated with baseline models and corresponding evaluation metrics to spur future research on this broad challenge.
To obtain high-quality annotations under limited budget, semi-automatic annotation methods are commonly used, where a portion of the data is annotated by experts and a model is then trained to complete the annotations for the remaining data. However, these methods mainly focus on selecting informative data for expert annotations to improve the model predictive ability (i.e., triage-to-human data), while the rest of the data is indiscriminately assigned to model annotation (i.e., triage-to-model data). This may lead to inefficiencies in budget allocation for annotations, as easy data that the model could accurately annotate may be unnecessarily assigned to the expert, and hard data may be misclassified by the model. As a result, the overall annotation quality may be compromised. To address this issue, we propose a selective annotation framework called SANT. It effectively takes advantage of both the triage-to-human and triage-to-model data through the proposed error-aware triage and bi-weighting mechanisms. As such, informative or hard data is assigned to the expert for annotation, while easy data is handled by the model. Experimental results show that SANT consistently outperforms other baselines, leading to higher-quality annotation through its proper allocation of data to both expert and model workers. We provide pioneering work on data annotation within budget constraints, establishing a landmark for future triage-based annotation studies.
Automating data generation with Large Language Models (LLMs) has become increasingly popular. In this work, we investigate the feasibility and effectiveness of LLM-based data generation in the challenging setting of source-grounded information-seeking dialogs, with response attribution, over long documents. Our source texts consist of long and noisy meeting transcripts, adding to the task complexity. Since automating attribution remains difficult, we propose a semi-automatic approach: dialog queries and responses are generated with LLMs, followed by human verification and identification of attribution spans. Using this approach, we created MISeD – Meeting Information Seeking Dialogs dataset – a dataset of information-seeking dialogs focused on meeting transcripts. Models finetuned with MISeD demonstrate superior performance compared to off-the-shelf models, even those of larger size. Finetuning on MISeD gives comparable response generation quality to finetuning on fully manual data, while improving attribution quality and reducing time and effort.
The integration of multi-document pre-training objectives into language models has resulted in remarkable improvements in multi-document downstream tasks. In this work, we propose extending this idea by pre-training a generic multi-document model from a novel cross-document question answering pre-training objective. To that end, given a set (or cluster) of topically-related documents, we systematically generate semantically-oriented questions from a salient sentence in one document and challenge the model, during pre-training, to answer these questions while “peeking” into other topically-related documents. In a similar manner, the model is also challenged to recover the sentence from which the question was generated, again while leveraging cross-document information. This novel multi-document QA formulation directs the model to better recover cross-text informational relations, and introduces a natural augmentation that artificially increases the pre-training data. Further, unlike prior multi-document models that focus on either classification or summarization tasks, our pre-training objective formulation enables the model to perform tasks that involve both short text generation (e.g., QA) and long text generation (e.g., summarization).Following this scheme, we pre-train our model - termed QAmden - and evaluate its performance across several multi-document tasks, including multi-document QA, summarization, and query-focused summarization, yielding improvements of up to 7%, and significantly outperforms zero-shot GPT-3.5 and GPT-4.
Identifying all predicate-argument relations in a sentence has been a fundamental research target in NLP. While traditionally these relations were modeled via formal schemata, the recent QA-SRL paradigm (and its extensions) present appealing advantages of capturing such relations through intuitive natural language question-answer (QA) pairs. In this paper, we extend the QA-based semantics framework to cover adjectival predicates, which carry important information in many downstream settings yet have been scarcely addressed in NLP research. Firstly, based on some prior literature and empirical assessment, we propose capturing four types of core adjectival arguments, through corresponding question types. Notably, our coverage goes beyond prior annotations of adjectival arguments, while also explicating valuable implicit arguments. Next, we develop an extensive data annotation methodology, involving controlled crowdsourcing and targeted expert review. Following, we create a high-quality dataset, consisting of 9K adjective mentions with 12K predicate-argument instances (QAs). Finally, we present and analyze baseline models based on text-to-text language modeling, indicating challenges for future research, particularly regarding the scarce argument types. Overall, we suggest that our contributions can provide the basis for research on contemporary modeling of adjectival information.
Fusion-in-Decoder (FiD) is an effective retrieval-augmented language model applied across a variety of open-domain tasks, such as question answering, fact checking, etc. In FiD, supporting passages are first retrieved and then processed using a generative model (Reader), which can cause a significant bottleneck in decoding time, particularly with long outputs. In this work, we analyze the contribution and necessity of all the retrieved passages to the performance of reader models, and propose eliminating some of the retrieved information, at the token level, that might not contribute essential information to the answer generation process. We demonstrate that our method can reduce run-time by up to 62.2%, with only a 2% reduction in performance, and in some cases, even improve the performance results.
The performance of automatic summarization models has improved dramatically in recent years. Yet, there is still a gap in meeting specific information needs of users in real-world scenarios, particularly when a targeted summary is sought, such as in the useful aspect-based summarization setting targeted in this paper. Previous datasets and studies for this setting have predominantly concentrated on a limited set of pre-defined aspects, focused solely on single document inputs, or relied on synthetic data. To advance research on more realistic scenarios, we introduce OpenAsp, a benchmark for multi-document open aspect-based summarization. This benchmark is created using a novel and cost-effective annotation protocol, by which an open aspect dataset is derived from existing generic multi-document summarization datasets. We analyze the properties of OpenAsp showcasing its high-quality content. Further, we show that the realistic open-aspect setting realized in OpenAsp poses a challenge for current state-of-the-art summarization models, as well as for large language models.
Large language models (LLMs) have been shown to possess impressive capabilities, while also raising crucial concerns about the faithfulness of their responses. A primary issue arising in this context is the management of (un)answerable queries by LLMs, which often results in hallucinatory behavior due to overconfidence. In this paper, we explore the behavior of LLMs when presented with (un)answerable queries. We ask: do models represent the fact that the question is (un)answerable when generating a hallucinatory answer? Our results show strong indications that such models encode the answerability of an input query, with the representation of the first decoded token often being a strong indicator. These findings shed new light on the spatial organization within the latent representations of LLMs, unveiling previously unexplored facets of these models. Moreover, they pave the way for the development of improved decoding techniques with better adherence to factual generation, particularly in scenarios where query (un)answerability is a concern.
Various NLP tasks require a complex hierarchical structure over nodes, where each node is a cluster of items. Examples include generating entailment graphs, hierarchical cross-document coreference resolution, annotating event and subevent relations, etc. To enable efficient annotation of such hierarchical structures, we release CHAMP, an open source tool allowing to incrementally construct both clusters and hierarchy simultaneously over any type of texts. This incremental approach significantly reduces annotation time compared to the common pairwise annotation approach and also guarantees maintaining transitivity at the cluster and hierarchy levels. Furthermore, CHAMP includes a consolidation mode, where an adjudicator can easily compare multiple cluster hierarchy annotations and resolve disagreements.
Current approaches for text summarization are predominantly automatic, with rather limited space for human intervention and control over the process. In this paper, we introduce SummHelper, and screencast demo at https://www.youtube.com/watch?v=nGcknJwGhxk a 2-phase summarization assistant designed to foster human-machine collaboration. The initial phase involves content selection, where the system recommends potential content, allowing users to accept, modify, or introduce additional selections. The subsequent phase, content consolidation, involves SummHelper generating a coherent summary from these selections, which users can then refine using visual mappings between the summary and the source text. Small-scale user studies reveal the effectiveness of our application, with participants being especially appreciative of the balance between automated guidance and opportunities for personal input.
Tasks involving text generation based on multiple input texts, such as multi-document summarization, long-form question answering and contemporary dialogue applications, challenge models for their ability to properly consolidate partly-overlapping multi-text information. However, these tasks entangle the consolidation phase with the often subjective and ill-defined content selection requirement, impeding proper assessment of models’ consolidation capabilities. In this paper, we suggest revisiting the sentence union generation task as an effective well-defined testbed for assessing text consolidation capabilities, decoupling the consolidation challenge from subjective content selection. To support research on this task, we present refined annotation methodology and tools for crowdsourcing sentence union, create the largest union dataset to date and provide an analysis of its rich coverage of various consolidation aspects. We then propose a comprehensive evaluation protocol for union generation, including both human and automatic evaluation. Finally, as baselines, we evaluate state-of-the-art language models on the task, along with a detailed analysis of their capacity to address multi-text consolidation challenges and their limitations.
The recently introduced Controlled Text Reduction (CTR) task isolates the text generation step within typical summarization-style tasks. It does so by challenging models to generate coherent text conforming to pre-selected content within the input text (“highlights”). This framing enables increased modularity in summarization-like tasks, allowing to couple a single CTR model with various content-selection setups and modules. However, there are currently no reliable CTR models, while the performance of the existing baseline for the task is mediocre, falling short of practical utility. Here, we address this gap by introducing a high-quality, open-source CTR model that tackles two prior key limitations: inadequate enforcement of the content-preservation constraint, and suboptimal silver training data. Addressing these, we amplify the content-preservation constraint in both training, via RL, and inference, via a controlled decoding strategy. Further, we substantially improve the silver training data quality via GPT-4 distillation. Overall, pairing the distilled dataset with the highlight-adherence strategies yields marked gains over the current baseline, of up to 30 ROUGE-L points, providing a reliable CTR model for downstream use.
The common practice for assessing automatic evaluation metrics is to measure the correlation between their induced system rankings and those obtained by reliable human evaluation, where a higher correlation indicates a better metric. Yet, an intricate setting arises when an NLP task is evaluated by multiple Quality Criteria (QCs), like for text summarization where prominent criteria including relevance, consistency, fluency and coherence. In this paper, we challenge the soundness of this methodology when multiple QCs are involved, concretely for the summarization case. First, we show that the allegedly best metrics for certain QCs actually do not perform well, failing to detect even drastic summary corruptions with respect to the considered QC. To explain this, we show that some of the high correlations obtained in the multi-QC setup are spurious. Finally, we propose a procedure that may help detecting this effect. Overall, our findings highlight the need for further investigating metric evaluation methodologies for the multiple-QC case.
Disagreement in natural language annotation has mostly been studied from a perspective of biases introduced by the annotators and the annotation frameworks. Here, we propose to analyze another source of bias—task design bias, which has a particularly strong impact on crowdsourced linguistic annotations where natural language is used to elicit the interpretation of lay annotators. For this purpose we look at implicit discourse relation annotation, a task that has repeatedly been shown to be difficult due to the relations’ ambiguity. We compare the annotations of 1,200 discourse relations obtained using two distinct annotation tasks and quantify the biases of both methods across four different domains. Both methods are natural language annotation tasks designed for crowdsourcing. We show that the task design can push annotators towards certain relations and that some discourse relation senses can be better elicited with one or the other annotation approach. We also conclude that this type of bias should be taken into account when training and testing models.
The task of Cross-document Coreference Resolution has been traditionally formulated as requiring to identify all coreference links across a given set of documents. We propose an appealing, and often more applicable, complementary set up for the task – Cross-document Coreference Search, focusing in this paper on event coreference. Concretely, given a mention in context of an event of interest, considered as a query, the task is to find all coreferring mentions for the query event in a large document collection. To support research on this task, we create a corresponding dataset, which is derived from Wikipedia while leveraging annotations in the available Wikipedia Event Coreferecene dataset (WEC-Eng). Observing that the coreference search setup is largely analogous to the setting of Open Domain Question Answering, we adapt the prominent Deep Passage Retrieval (DPR) model to our setting, as an appealing baseline. Finally, we present a novel model that integrates a powerful coreference scoring scheme into the DPR architecture, yielding improved performance.
Producing a reduced version of a source text, as in generic or focused summarization, inherently involves two distinct subtasks: deciding on targeted content and generating a coherent text conveying it. While some popular approaches address summarization as a single end-to-end task, prominent works support decomposed modeling for individual subtasks. Further, semi-automated text reduction is also very appealing, where users may identify targeted content while models would generate a corresponding coherent summary.In this paper, we focus on the second subtask, of generating coherent text given pre-selected content. Concretely, we formalize Controlled Text Reduction as a standalone task, whose input is a source text with marked spans of targeted content (“highlighting”).A model then needs to generate a coherent text that includes all and only the target information.We advocate the potential of such models, both for modular fully-automatic summarization, as well as for semi-automated human-in-the-loop use cases.Facilitating proper research, we crowdsource high-quality dev and test datasets for the task. Further, we automatically generate a larger “silver” training dataset from available summarization benchmarks, leveraging a pretrained summary-source alignment model.Finally, employing these datasets, we present a supervised baseline model, showing promising results and insightful analyses.
The task of multi-document summarization (MDS) aims at models that, given multiple documents as input, are able to generate a summary that combines disperse information, originally spread __across__ these documents. Accordingly, it is expected that both reference summaries in MDS datasets, as well as system summaries, would indeed be based on such dispersed information. In this paper, we argue for quantifying and assessing this expectation. To that end, we propose an automated measure for evaluating the degree to which a summary is “disperse”, in the sense of the number of source documents needed to cover its content. We apply our measure to empirically analyze several popular MDS datasets, with respect to their reference summaries, as well as the output of state-of-the-art systems. Our results show that certain MDS datasets barely require combining information from multiple documents, where a single document often covers the full summary content. Overall, we advocate using our metric for assessing and improving the degree to which summarization datasets require combining multi-document information, and similarly how summarization models actually meet this challenge.
Various works suggest the appeals of incorporating explicit semantic representations when addressing challenging realistic NLP scenarios. Common approaches offer either comprehensive linguistically-based formalisms, like AMR, or alternatively Open-IE, which provides a shallow and partial representation. More recently, an appealing trend introduces semi-structured natural-language structures as an intermediate meaning-capturing representation, often in the form of questions and answers.In this work, we further promote this line of research by considering three prior QA-based semantic representations. These cover verbal, nominalized and discourse-based predications, regarded as jointly providing a comprehensive representation of textual information — termed QASem. To facilitate this perspective, we investigate how to best utilize pre-trained sequence-to-sequence language models, which seem particularly promising for generating representations that consist of natural language expressions (questions and answers). In particular, we examine and analyze input and output linearization strategies, as well as data augmentation and multitask learning for a scarce training data setup. Consequently, we release the first unified QASem parsing tool, easily applicable for downstream tasks that can benefit from an explicit semi-structured account of information units in text.
Obtaining linguistic annotation from novice crowdworkers is far from trivial. A case in point is the annotation of discourse relations, which is a complicated task. Recent methods have obtained promising results by extracting relation labels from either discourse connectives (DCs) or question-answer (QA) pairs that participants provide. The current contribution studies the effect of worker selection and training on the agreement on implicit relation labels between workers and gold labels, for both the DC and the QA method. In Study 1, workers were not specifically selected or trained, and the results show that there is much room for improvement. Study 2 shows that a combination of selection and training does lead to improved results, but the method is cost- and time-intensive. Study 3 shows that a selection-only approach is a viable alternative; it results in annotations of comparable quality compared to annotations from trained participants. The results generalized over both the DC and QA method and therefore indicate that a selection-only approach could also be effective for other crowdsourced discourse annotation tasks.
Text clustering methods were traditionally incorporated into multi-document summarization (MDS) as a means for coping with considerable information repetition. Particularly, clusters were leveraged to indicate information saliency as well as to avoid redundancy. Such prior methods focused on clustering sentences, even though closely related sentences usually contain also non-aligned parts. In this work, we revisit the clustering approach, grouping together sub-sentential propositions, aiming at more precise information alignment. Specifically, our method detects salient propositions, clusters them into paraphrastic clusters, and generates a representative sentence for each cluster via text fusion. Our summarization method improves over the previous state-of-the-art MDS method in the DUC 2004 and TAC 2011 datasets, both in automatic ROUGE scores and human preference.
NLP models that process multiple texts often struggle in recognizing corresponding and salient information that is often differently phrased, and consolidating the redundancies across texts. To facilitate research of such challenges, the sentence fusion task was proposed, yet previous datasets for this task were very limited in their size and scope. In this paper, we revisit and substantially extend previous dataset creation efforts. With careful modifications, relabeling, and employing complementing data sources, we were able to more than triple the size of a notable earlier dataset. Moreover, we show that our extended version uses more representative texts for multi-document tasks and provides a more diverse training set, which substantially improves model performance.
Interactive summarization is a task that facilitates user-guided exploration of information within a document set. While one would like to employ state of the art neural models to improve the quality of interactive summarization, many such technologies cannot ingest the full document set or cannot operate at sufficient speed for interactivity. To that end, we propose two novel deep reinforcement learning models for the task that address, respectively, the subtask of summarizing salient information that adheres to user queries, and the subtask of listing suggested queries to assist users throughout their exploration. In particular, our models allow encoding the interactive session state and history to refrain from redundancy. Together, these models compose a state of the art solution that addresses all of the task requirements. We compare our solution to a recent interactive summarization system, and show through an experimental study involving real users that our models are able to improve informativeness while preserving positive user experience.
Long-context question answering (QA) tasks require reasoning over a long document or multiple documents. Addressing these tasks often benefits from identifying a set of evidence spans (e.g., sentences), which provide supporting evidence for answering the question. In this work, we propose a novel method for equipping long-context QA models with an additional sequence-level objective for better identification of the supporting evidence. We achieve this via an additional contrastive supervision signal in finetuning, where the model is encouraged to explicitly discriminate supporting evidence sentences from negative ones by maximizing question-evidence similarity. The proposed additional loss exhibits consistent improvements on three different strong long-context transformer models, across two challenging question answering benchmarks – HotpotQA and QAsper.
Domain adaptation methods often exploit domain-transferable input features, a.k.a. pivots. The task of Aspect and Opinion Term Extraction presents a special challenge for domain transfer: while opinion terms largely transfer across domains, aspects change drastically from one domain to another (e.g. from restaurants to laptops). In this paper, we investigate and establish empirically a prior conjecture, which suggests that the linguistic relations connecting opinion terms to their aspects transfer well across domains and therefore can be leveraged for cross-domain aspect term extraction. We present several analyses supporting this conjecture, via experiments with four linguistic dependency formalisms to represent relation patterns. Subsequently, we present an aspect term extraction method that drives models to consider opinion–aspect relations via explicit multitask objectives. This method provides significant performance gains, even on top of a prior state-of-the-art linguistically-informed model, which are shown in analysis to stem from the relational pivoting signal.
Aligning sentences in a reference summary with their counterparts in source documents was shown as a useful auxiliary summarization task, notably for generating training data for salience detection. Despite its assessed utility, the alignment step was mostly approached with heuristic unsupervised methods, typically ROUGE-based, and was never independently optimized or evaluated. In this paper, we propose establishing summary-source alignment as an explicit task, while introducing two major novelties: (1) applying it at the more accurate proposition span level, and (2) approaching it as a supervised classification task. To that end, we created a novel training dataset for proposition-level alignment, derived automatically from available summarization evaluation data. In addition, we crowdsourced dev and test datasets, enabling model development and proper evaluation. Utilizing these data, we present a supervised proposition alignment baseline model, showing improved alignment-quality over the unsupervised approach.
Cross-document co-reference resolution (CDCR) is the task of identifying and linking mentions to entities and concepts across many text documents. Current state-of-the-art models for this task assume that all documents are of the same type (e.g. news articles) or fall under the same theme. However, it is also desirable to perform CDCR across different domains (type or theme). A particular use case we focus on in this paper is the resolution of entities mentioned across scientific work and newspaper articles that discuss them. Identifying the same entities and corresponding concepts in both scientific articles and news can help scientists understand how their work is represented in mainstream media. We propose a new task and English language dataset for cross-document cross-domain co-reference resolution (CDˆ2CR). The task aims to identify links between entities across heterogeneous document types. We show that in this cross-domain, cross-document setting, existing CDCR models do not perform well and we provide a baseline model that outperforms current state-of-the-art CDCR models on CDˆ2CR. Our data set, annotation tool and guidelines as well as our model for cross-document cross-domain co-reference are all supplied as open access open source resources.
Asking questions about a situation is an inherent step towards understanding it. To this end, we introduce the task of role question generation, which, given a predicate mention and a passage, requires producing a set of questions asking about all possible semantic roles of the predicate. We develop a two-stage model for this task, which first produces a context-independent question prototype for each role and then revises it to be contextually appropriate for the passage. Unlike most existing approaches to question generation, our approach does not require conditioning on existing answers in the text. Instead, we condition on the type of information to inquire about, regardless of whether the answer appears explicitly in the text, could be inferred from it, or should be sought elsewhere. Our evaluation demonstrates that we generate diverse and well-formed questions for a large, broad-coverage ontology of predicates and roles.
Multi-text applications, such as multi-document summarization, are typically required to model redundancies across related texts. Current methods confronting consolidation struggle to fuse overlapping information. In order to explicitly represent content overlap, we propose to align predicate-argument relations across texts, providing a potential scaffold for information consolidation. We go beyond clustering coreferring mentions, and instead model overlap with respect to redundancy at a propositional level, rather than merely detecting shared referents. Our setting exploits QA-SRL, utilizing question-answer pairs to capture predicate-argument relations, facilitating laymen annotation of cross-text alignments. We employ crowd-workers for constructing a dataset of QA-based alignments, and present a baseline QA alignment model trained over our dataset. Analyses show that our new task is semantically challenging, capturing content overlap beyond lexical similarity and complements cross-document coreference with proposition-level links, offering potential use for downstream tasks.
We introduce iFᴀᴄᴇᴛSᴜᴍ, a web application for exploring topical document collections. iFᴀᴄᴇᴛSᴜᴍ integrates interactive summarization together with faceted search, by providing a novel faceted navigation scheme that yields abstractive summaries for the user’s selections. This approach offers both a comprehensive overview as well as particular details regard-ing subtopics of choice. The facets are automatically produced based on cross-document coreference pipelines, rendering generic concepts, entities and statements surfacing in the source texts. We analyze the effectiveness of our application through small-scale user studies that suggest the usefulness of our tool.
We introduce a new pretraining approach geared for multi-document language modeling, incorporating two key ideas into the masked language modeling self-supervised objective. First, instead of considering documents in isolation, we pretrain over sets of multiple related documents, encouraging the model to learn cross-document relationships. Second, we improve over recent long-range transformers by introducing dynamic global attention that has access to the entire input to predict masked tokens. We release CDLM (Cross-Document Language Model), a new general language model for multi-document setting that can be easily applied to downstream tasks. Our extensive analysis shows that both ideas are essential for the success of CDLM, and work in synergy to set new state-of-the-art results for several multi-text tasks.
Allowing users to interact with multi-document summarizers is a promising direction towards improving and customizing summary results. Different ideas for interactive summarization have been proposed in previous work but these solutions are highly divergent and incomparable. In this paper, we develop an end-to-end evaluation framework for interactive summarization, focusing on expansion-based interaction, which considers the accumulating information along a user session. Our framework includes a procedure of collecting real user sessions, as well as evaluation measures relying on summarization standards, but adapted to reflect interaction. All of our solutions and resources are available publicly as a benchmark, allowing comparison of future developments in interactive summarization, and spurring progress in its methodological evaluation. We demonstrate the use of our framework by evaluating and comparing baseline implementations that we developed for this purpose, which will serve as part of our benchmark. Our extensive experimentation and analysis motivate the proposed evaluation framework design and support its viability.
Cross-document event coreference resolution is a foundational task for NLP applications involving multi-text processing. However, existing corpora for this task are scarce and relatively small, while annotating only modest-size clusters of documents belonging to the same topic. To complement these resources and enhance future research, we present Wikipedia Event Coreference (WEC), an efficient methodology for gathering a large-scale dataset for cross-document event coreference from Wikipedia, where coreference links are not restricted within predefined topics. We apply this methodology to the English Wikipedia and extract our large-scale WEC-Eng dataset. Notably, our dataset creation method is generic and can be applied with relatively little effort to other Wikipedia languages. To set baseline results, we develop an algorithm that adapts components of state-of-the-art models for within-document coreference resolution to the cross-document setting. Our model is suitably efficient and outperforms previously published state-of-the-art results for the task.
We present InferBert, a method to enhance transformer-based inference models with relevant relational knowledge. Our approach facilitates learning generic inference patterns requiring relational knowledge (e.g. inferences related to hypernymy) during training, while injecting on-demand the relevant relational facts (e.g. pangolin is an animal) at test time. We apply InferBERT to the NLI task over a diverse set of inference types (hypernymy, location, color, and country of origin), for which we collected challenge datasets. In this setting, InferBert succeeds to learn general inference patterns, from a relatively small number of training instances, while not hurting performance on the original NLI data and substantially outperforming prior knowledge enhancement models on the challenge data. It further applies its inferences successfully at test time to previously unobserved entities. InferBert is computationally more efficient than most prior methods, in terms of number of parameters, memory consumption and training time.
We point out that common evaluation practices for cross-document coreference resolution have been unrealistically permissive in their assumed settings, yielding inflated results. We propose addressing this issue via two evaluation methodology principles. First, as in other tasks, models should be evaluated on predicted mentions rather than on gold mentions. Doing this raises a subtle issue regarding singleton coreference clusters, which we address by decoupling the evaluation of mention detection from that of coreference linking. Second, we argue that models should not exploit the synthetic topic structure of the standard ECB+ dataset, forcing models to confront the lexical ambiguity challenge, as intended by the dataset creators. We demonstrate empirically the drastic impact of our more realistic evaluation principles on a competitive model, yielding a score which is 33 F1 lower compared to evaluating by prior lenient practices.
We introduce a new approach for smoothing and improving the quality of word embeddings. We consider a method of fusing word embeddings that were trained on the same corpus but with different initializations. We project all the models to a shared vector space using an efficient implementation of the Generalized Procrustes Analysis (GPA) procedure, previously used in multilingual word translation. Our word representation demonstrates consistent improvements over the raw models as well as their simplistic average, on a range of tasks. As the new representations are more stable and reliable, there is a noticeable improvement in rare word evaluations.
We explore few-shot learning (FSL) for relation classification (RC). Focusing on the realistic scenario of FSL, in which a test instance might not belong to any of the target categories (none-of-the-above, [NOTA]), we first revisit the recent popular dataset structure for FSL, pointing out its unrealistic data distribution. To remedy this, we propose a novel methodology for deriving more realistic few-shot test data from available datasets for supervised RC, and apply it to the TACRED dataset. This yields a new challenging benchmark for FSL-RC, on which state of the art models show poor performance. Next, we analyze classification schemes within the popular embedding-based nearest-neighbor approach for FSL, with respect to constraints they impose on the embedding space. Triggered by this analysis, we propose a novel classification scheme in which the NOTA category is represented as learned vectors, shown empirically to be an appealing option for FSL.
Question-answer driven Semantic Role Labeling (QA-SRL) was proposed as an attractive open and natural flavour of SRL, potentially attainable from laymen. Recently, a large-scale crowdsourced QA-SRL corpus and a trained parser were released. Trying to replicate the QA-SRL annotation for new texts, we found that the resulting annotations were lacking in quality, particularly in coverage, making them insufficient for further research and evaluation. In this paper, we present an improved crowdsourcing protocol for complex semantic annotation, involving worker selection and training, and a data consolidation phase. Applying this protocol to QA-SRL yielded high-quality annotation with drastically higher coverage, producing a new gold evaluation dataset. We believe that our annotation protocol and gold standard will facilitate future replicable research of natural semantic annotations.
We propose a new semantic scheme for capturing predicate-argument relations for nominalizations, termed QANom. This scheme extends the QA-SRL formalism (He et al., 2015), modeling the relations between nominalizations and their arguments via natural language question-answer pairs. We construct the first QANom dataset using controlled crowdsourcing, analyze its quality and compare it to expertly annotated nominal-SRL annotations, as well as to other QA-driven annotations. In addition, we train a baseline QANom parser for identifying nominalizations and labeling their arguments with question-answer pairs. Finally, we demonstrate the extrinsic utility of our annotations for downstream tasks using both indirect supervision and zero-shot settings.
Discourse relations describe how two propositions relate to one another, and identifying them automatically is an integral part of natural language understanding. However, annotating discourse relations typically requires expert annotators. Recently, different semantic aspects of a sentence have been represented and crowd-sourced via question-and-answer (QA) pairs. This paper proposes a novel representation of discourse relations as QA pairs, which in turn allows us to crowd-source wide-coverage data annotated with discourse relations, via an intuitively appealing interface for composing such questions and answers. Based on our proposed representation, we collect a novel and wide-coverage QADiscourse dataset, and present baseline algorithms for predicting QADiscourse relations.
We propose the novel Within-Between Relation model for recognizing lexical-semantic relations between words. Our model integrates relational and distributional signals, forming an effective sub-space representation for each relation. We show that the proposed model is competitive and outperforms other baselines, across various benchmarks.
Coreference annotation is an important, yet expensive and time consuming, task, which often involved expert annotators trained on complex decision guidelines. To enable cheaper and more efficient annotation, we present CoRefi, a web-based coreference annotation suite, oriented for crowdsourcing. Beyond the core coreference annotation tool, CoRefi provides guided onboarding for the task as well as a novel algorithm for a reviewing phase. CoRefi is open source and directly embeds into any website, including popular crowdsourcing platforms. CoRefi Demo: aka.ms/corefi Video Tour: aka.ms/corefivideo Github Repo: https://github.com/aribornstein/corefi
We study the potential synergy between two different NLP tasks, both confronting predicate lexical variability: identifying predicate paraphrases, and event coreference resolution. First, we used annotations from an event coreference dataset as distant supervision to re-score heuristically-extracted predicate paraphrases. The new scoring gained more than 18 points in average precision upon their ranking by the original scoring method. Then, we used the same re-ranking features as additional inputs to a state-of-the-art event coreference resolution model, which yielded modest but consistent improvements to the model’s performance. The results suggest a promising direction to leverage data and models for each of the tasks to the benefit of the other.
Reinforcement Learning (RL)based document summarisation systems yield state-of-the-art performance in terms of ROUGE scores, because they directly use ROUGE as the rewards during training. However, summaries with high ROUGE scores often receive low human judgement. To find a better reward function that can guide RL to generate human-appealing summaries, we learn a reward function from human ratings on 2,500 summaries. Our reward function only takes the document and system summary as input. Hence, once trained, it can be used to train RL based summarisation systems without using any reference summaries. We show that our learned rewards have significantly higher correlation with human ratings than previous approaches. Human evaluation experiments show that, compared to the state-of-the-art supervised-learning systems and ROUGE-as-rewards RL summarisation systems, the RL systems using our learned rewards during training generate summaries with higher human ratings. The learned reward function and our source code are available at https://github.com/yg211/summary-reward-no-reference.
We present ABSApp, a portable system for weakly-supervised aspect-based sentiment ex- traction. The system is interpretable and user friendly and does not require labeled training data, hence can be rapidly and cost-effectively used across different domains in applied setups. The system flow includes three stages: First, it generates domain-specific aspect and opinion lexicons based on an unlabeled dataset; second, it enables the user to view and edit those lexicons (weak supervision); and finally, it enables the user to select an unlabeled target dataset from the same domain, classify it, and generate an aspect-based sentiment report. ABSApp has been successfully used in a number of real-life use cases, among them movie review analysis and convention impact analysis.
Phenomenon-specific “adversarial” datasets have been recently designed to perform targeted stress-tests for particular inference types. Recent work (Liu et al., 2019a) proposed that such datasets can be utilized for training NLI and other types of models, often allowing to learn the phenomenon in focus and improve on the challenge dataset, indicating a “blind spot” in the original training data. Yet, although a model can improve in such a training process, it might still be vulnerable to other challenge datasets targeting the same phenomenon but drawn from a different distribution, such as having a different syntactic complexity level. In this work, we extend this method to drive conclusions about a model’s ability to learn and generalize a target phenomenon rather than to “learn” a dataset, by controlling additional aspects in the adversarial datasets. We demonstrate our approach on two inference phenomena – dative alternation and numerical reasoning, elaborating, and in some cases contradicting, the results of Liu et al.. Our methodology enables building better challenge datasets for creating more robust models, and may yield better model understanding and subsequent overarching improvements.
Conducting a manual evaluation is considered an essential part of summary evaluation methodology. Traditionally, the Pyramid protocol, which exhaustively compares system summaries to references, has been perceived as very reliable, providing objective scores. Yet, due to the high cost of the Pyramid method and the required expertise, researchers resorted to cheaper and less thorough manual evaluation methods, such as Responsiveness and pairwise comparison, attainable via crowdsourcing. We revisit the Pyramid approach, proposing a lightweight sampling-based version that is crowdsourcable. We analyze the performance of our method in comparison to original expert-based Pyramid evaluations, showing higher correlation relative to the common Responsiveness method. We release our crowdsourced Summary-Content-Units, along with all crowdsourcing scripts, for future evaluations.
Data-to-text generation can be conceptually divided into two parts: ordering and structuring the information (planning), and generating fluent language describing the information (realization). Modern neural generation systems conflate these two steps into a single end-to-end differentiable system. We propose to split the generation process into a symbolic text-planning stage that is faithful to the input, followed by a neural generation stage that focuses only on realization. For training a plan-to-text generator, we present a method for matching reference texts to their corresponding text plans. For inference time, we describe a method for selecting high-quality text plans for new inputs. We implement and evaluate our approach on the WebNLG benchmark. Our results demonstrate that decoupling text planning from neural realization indeed improves the system’s reliability and adequacy while maintaining fluent output. We observe improvements both in BLEU scores and in manual evaluations. Another benefit of our approach is the ability to output diverse realizations of the same input, paving the way to explicit control over the generated text structure.
While recent progress on abstractive summarization has led to remarkably fluent summaries, factual errors in generated summaries still severely limit their use in practice. In this paper, we evaluate summaries produced by state-of-the-art models via crowdsourcing and show that such errors occur frequently, in particular with more abstractive models. We study whether textual entailment predictions can be used to detect such errors and if they can be reduced by reranking alternative predicted summaries. That leads to an interesting downstream application for entailment models. In our experiments, we find that out-of-the-box entailment models trained on NLI datasets do not yet offer the desired performance for the downstream task and we therefore release our annotations as additional test data for future extrinsic evaluations of NLI.
Recognizing coreferring events and entities across multiple texts is crucial for many NLP applications. Despite the task’s importance, research focus was given mostly to within-document entity coreference, with rather little attention to the other variants. We propose a neural architecture for cross-document coreference resolution. Inspired by Lee et al. (2012), we jointly model entity and event coreference. We represent an event (entity) mention using its lexical span, surrounding context, and relation to entity (event) mentions via predicate-arguments structures. Our model outperforms the previous state-of-the-art event coreference model on ECB+, while providing the first entity coreference results on this corpus. Our analysis confirms that all our representation elements, including the mention span itself, its context, and the relation to other mentions contribute to the model’s success.
Building meaningful phrase representations is challenging because phrase meanings are not simply the sum of their constituent meanings. Lexical composition can shift the meanings of the constituent words and introduce implicit information. We tested a broad range of textual representations for their capacity to address these issues. We found that, as expected, contextualized word representations perform better than static word embeddings, more so on detecting meaning shift than in recovering implicit information, in which their performance is still far from that of humans. Our evaluation suite, consisting of six tasks related to lexical composition effects, can serve future research aiming to improve representations.
In this paper, we present a novel algorithm that combines multi-context term embeddings using a neural classifier and we test this approach on the use case of corpus-based term set expansion. In addition, we present a novel and unique dataset for intrinsic evaluation of corpus-based term set expansion algorithms. We show that, over this dataset, our algorithm provides up to 5 mean average precision points over the best baseline.
We show that plain ROUGE F1 scores are not ideal for comparing current neural systems which on average produce different lengths. This is due to a non-linear pattern between ROUGE F1 and summary length. To alleviate the effect of length during evaluation, we have proposed a new method which normalizes the ROUGE F1 scores of a system by that of a random system with same average output length. A pilot human evaluation has shown that humans prefer short summaries in terms of the verbosity of a summary but overall consider longer summaries to be of higher quality. While human evaluations are more expensive in time and resources, it is clear that normalization, such as the one we proposed for automatic evaluation, will make human evaluations more meaningful.
End-to-end neural approaches have achieved state-of-the-art performance in many natural language processing (NLP) tasks. Yet, they often lack transparency of the underlying decision-making process, hindering error analysis and certain model improvements. In this work, we revisit the binary linearization approach to surface realization, which exhibits more interpretable behavior, but was falling short in terms of prediction accuracy. We show how enriching the training data to better capture word order constraints almost doubles the performance of the system. We further demonstrate that encoding both local and global prediction contexts yields another considerable performance boost. With the proposed modifications, the system which ranked low in the latest shared task on multilingual surface realization now achieves best results in five out of ten languages, while being on par with the state-of-the-art approaches in others.
We follow the step-by-step approach to neural data-to-text generation proposed by Moryossef et al (2019), in which the generation process is divided into a text planning stage followed by a plan realization stage. We suggest four extensions to that framework: (1) we introduce a trainable neural planning component that can generate effective plans several orders of magnitude faster than the original planner; (2) we incorporate typing hints that improve the model’s ability to deal with unseen relations and entities; (3) we introduce a verification-by-reranking stage that substantially improves the faithfulness of the resulting texts; (4) we incorporate a simple but effective referring expression generation module. These extensions result in a generation process that is faster, more fluent, and more accurate.
We present SetExpander, a corpus-based system for expanding a seed set of terms into a more complete set of terms that belong to the same semantic class. SetExpander implements an iterative end-to end workflow for term set expansion. It enables users to easily select a seed set of terms, expand it, view the expanded set, validate it, re-expand the validated set and store it, thus simplifying the extraction of domain-specific fine-grained semantic classes. SetExpander has been used for solving real-life use cases including integration in an automated recruitment system and an issues and defects resolution system. A video demo of SetExpander is available at https://drive.google.com/open?id=1e545bB87Autsch36DjnJHmq3HWfSd1Rv .
Practical summarization systems are expected to produce summaries of varying lengths, per user needs. While a couple of early summarization benchmarks tested systems across multiple summary lengths, this practice was mostly abandoned due to the assumed cost of producing reference summaries of multiple lengths. In this paper, we raise the research question of whether reference summaries of a single length can be used to reliably evaluate system summaries of multiple lengths. For that, we have analyzed a couple of datasets as a case study, using several variants of the ROUGE metric that are standard in summarization evaluation. Our findings indicate that the evaluation protocol in question is indeed competitive. This result paves the way to practically evaluating varying-length summaries with simple, possibly existing, summarization benchmarks.
We propose a novel approach to semantic dependency parsing (SDP) by casting the task as an instance of multi-lingual machine translation, where each semantic representation is a different foreign dialect. To that end, we first generalize syntactic linearization techniques to account for the richer semantic dependency graph structure. Following, we design a neural sequence-to-sequence framework which can effectively recover our graph linearizations, performing almost on-par with previous SDP state-of-the-art while requiring less parallel training annotations. Beyond SDP, our linearization technique opens the door to integration of graph-based semantic representations as features in neural models for downstream applications.
We present data and methods that enable a supervised learning approach to Open Information Extraction (Open IE). Central to the approach is a novel formulation of Open IE as a sequence tagging problem, addressing challenges such as encoding multiple extractions for a predicate. We also develop a bi-LSTM transducer, extending recent deep Semantic Role Labeling models to extract Open IE tuples and provide confidence scores for tuning their precision-recall tradeoff. Furthermore, we show that the recently released Question-Answer Meaning Representation dataset can be automatically converted into an Open IE corpus which significantly increases the amount of available training data. Our supervised model outperforms the existing state-of-the-art Open IE systems on benchmark datasets.
We introduce Question-Answer Meaning Representations (QAMRs), which represent the predicate-argument structure of a sentence as a set of question-answer pairs. We develop a crowdsourcing scheme to show that QAMRs can be labeled with very little training, and gather a dataset with over 5,000 sentences and 100,000 questions. A qualitative analysis demonstrates that the crowd-generated question-answer pairs cover the vast majority of predicate-argument relationships in existing datasets (including PropBank, NomBank, and QA-SRL) along with many previously under-resourced ones, including implicit arguments and relations. We also report baseline models for question generation and answering, and summarize a recent approach for using QAMR labels to improve an Open IE system. These results suggest the freely available QAMR data and annotation scheme should support significant future work.
Revealing the implicit semantic relation between the constituents of a noun-compound is important for many NLP applications. It has been addressed in the literature either as a classification task to a set of pre-defined relations or by producing free text paraphrases explicating the relations. Most existing paraphrasing methods lack the ability to generalize, and have a hard time interpreting infrequent or new noun-compounds. We propose a neural model that generalizes better by representing paraphrases in a continuous space, generalizing for both unseen noun-compounds and rare paraphrases. Our model helps improving performance on both the noun-compound paraphrasing and classification tasks.
Most previous supervised event extraction methods have relied on features derived from manual annotations, and thus cannot be applied to new event types without extra annotation effort. We take a fresh look at event extraction and model it as a generic grounding problem: mapping each event mention to a specific type in a target event ontology. We design a transferable architecture of structural and compositional neural networks to jointly represent and map event mentions and types into a shared semantic space. Based on this new framework, we can select, for each event mention, the event type which is semantically closest in this space as its type. By leveraging manual annotations available for a small set of existing event types, our framework can be applied to new unseen event types without additional manual annotations. When tested on 23 unseen event types, our zero-shot framework, without manual annotations, achieved performance comparable to a supervised model trained from 3,000 sentences annotated with 500 event mentions.
In this study, we introduce a new approach for learning language models by training them to estimate word-context pointwise mutual information (PMI), and then deriving the desired conditional probabilities from PMI at test time. Specifically, we show that with minor modifications to word2vec’s algorithm, we get principled language models that are closely related to the well-established Noise Contrastive Estimation (NCE) based language models. A compelling aspect of our approach is that our models are trained with the same simple negative sampling objective function that is commonly used in word2vec to learn word embeddings.
We present a novel interactive summarization system that is based on abstractive summarization, derived from a recent consolidated knowledge representation for multiple texts. We incorporate a couple of interaction mechanisms, providing a bullet-style summary while allowing to attain the most important information first and interactively drill down to more specific details. A usability study of our implementation, for event news tweets, suggests the utility of our approach for text exploration.
Previous models for the assessment of commitment towards a predicate in a sentence (also known as factuality prediction) were trained and tested against a specific annotated dataset, subsequently limiting the generality of their results. In this work we propose an intuitive method for mapping three previously annotated corpora onto a single factuality scale, thereby enabling models to be tested across these corpora. In addition, we design a novel model for factuality prediction by first extending a previous rule-based factuality prediction system and applying it over an abstraction of dependency trees, and then using the output of this system in a supervised classifier. We show that this model outperforms previous methods on all three datasets. We make both the unified factuality corpus and our new model publicly available.
We present a simple method for ever-growing extraction of predicate paraphrases from news headlines in Twitter. Analysis of the output of ten weeks of collection shows that the accuracy of paraphrases with different support levels is estimated between 60-86%. We also demonstrate that our resource is to a large extent complementary to existing resources, providing many novel paraphrases. Our resource is publicly available, continuously expanding based on daily news.
We propose to move from Open Information Extraction (OIE) ahead to Open Knowledge Representation (OKR), aiming to represent information conveyed jointly in a set of texts in an open text-based manner. We do so by consolidating OIE extractions using entity and predicate coreference, while modeling information containment between coreferring elements via lexical entailment. We suggest that generating OKR structures can be a useful step in the NLP pipeline, to give semantic applications an easy handle on consolidated information across multiple texts.
Sentence intersection captures the semantic overlap of two texts, generalizing over paradigms such as textual entailment and semantic text similarity. Despite its modeling power, it has received little attention because it is difficult for non-experts to annotate. We analyze 200 pairs of similar sentences and identify several underlying properties of sentence intersection. We leverage these insights to design an algorithm that decomposes the sentence intersection task into several simpler annotation tasks, facilitating the construction of a high quality dataset via crowdsourcing. We implement this approach and provide an annotated dataset of 1,764 sentence intersections.
Annotated in-domain corpora are crucial to the successful development of dialogue systems of automated agents, and in particular for developing natural language understanding (NLU) components of such systems. Unfortunately, such important resources are scarce. In this work, we introduce an annotated natural language human-agent dialogue corpus in the negotiation domain. The corpus was collected using Amazon Mechanical Turk following the ‘Wizard-Of-Oz’ approach, where a ‘wizard’ human translates the participants’ natural language utterances in real time into a semantic language. Once dialogue collection was completed, utterances were annotated with intent labels by two independent annotators, achieving high inter-annotator agreement. Our initial experiments with an SVM classifier show that automatically inferring such labels from the utterances is far from trivial. We make our corpus publicly available to serve as an aid in the development of dialogue systems for negotiation agents, and suggest that analogous corpora can be created following our methodology and using our available source code. To the best of our knowledge this is the first publicly available negotiation dialogue corpus.
Recognizing various semantic relations between terms is beneficial for many NLP tasks. While path-based and distributional information sources are considered complementary for this task, the superior results the latter showed recently suggested that the former’s contribution might have become obsolete. We follow the recent success of an integrated neural method for hypernymy detection (Shwartz et al., 2016) and extend it to recognize multiple relations. The empirical results show that this method is effective in the multiclass setting as well. We further show that the path-based information source always contributes to the classification, and analyze the cases in which it mostly complements the distributional information.
We present a submission to the CogALex 2016 shared task on the corpus-based identification of semantic relations, using LexNET (Shwartz and Dagan, 2016), an integrated path-based and distributional method for semantic relation classification. The reported results in the shared task bring this submission to the third place on subtask 1 (word relatedness), and the first place on subtask 2 (semantic relation classification), demonstrating the utility of integrating the complementary path-based and distributional information sources in recognizing concrete semantic relations. Combined with a common similarity measure, LexNET performs fairly good on the word relatedness task (subtask 1). The relatively low performance of LexNET and all other systems on subtask 2, however, confirms the difficulty of the semantic relation classification task, and stresses the need to develop additional methods for this task.
Recent trends suggest that neural-network-inspired word embedding models outperform traditional count-based distributional models on word similarity and analogy detection tasks. We reveal that much of the performance gains of word embeddings are due to certain system design choices and hyperparameter optimizations, rather than the embedding algorithms themselves. Furthermore, we show that these modifications can be transferred to traditional distributional models, yielding similar gains. In contrast to prior reports, we observe mostly local or insignificant performance differences between the methods, with no global advantage to any single approach over the others.
Recent progress in research of the Recognizing Textual Entailment (RTE) task shows a constantly-increasing level of complexity in this research field. A way to avoid having this complexity becoming a barrier for researchers, especially for new-comers in the field, is to provide a freely available RTE system with a high level of flexibility and extensibility. In this paper, we introduce our RTE system, BiuTee2, and suggest it as an effective research framework for RTE. In particular, BiuTee follows the prominent transformation-based paradigm for RTE, and offers an accessible platform for research within this approach. We describe each of BiuTee’s components and point out the mechanisms and properties which directly support adaptations and integration of new components. In addition, we describe BiuTee’s visual tracing tool, which provides notable assistance for researchers in refining and “debugging” their knowledge resources and inference components.
This paper proposes a methodology for the creation of specialized data sets for Textual Entailment, made of monothematic Text-Hypothesis pairs (i.e. pairs in which only one linguistic phenomenon relevant to the entailment relation is highlighted and isolated). The expected benefits derive from the intuition that investigating the linguistic phenomena separately, i.e. decomposing the complexity of the TE problem, would yield an improvement in the development of specific strategies to cope with them. The annotation procedure assumes that humans have knowledge about the linguistic phenomena relevant to inference, and a classification of such phenomena both into fine grained and macro categories is suggested. We experimented with the proposed methodology over a sample of pairs taken from the RTE-5 data set, and investigated critical issues arising when entailment, contradiction or unknown pairs are considered. The result is a new resource, which can be profitably used both to advance the comprehension of the linguistic phenomena relevant to entailment judgments and to make a first step towards the creation of large-scale specialized data sets.
Discourse phenomena play a major role in text processing tasks. However, so far relatively little study has been devoted to the relevance of discourse phenomena for inference. Therefore, an experimental study was carried out to assess the relevance of anaphora and coreference for Textual Entailment (TE), a prominent inference framework. First, the annotation of anaphoric and coreferential links in the RTE-5 Search data set was performed according to a specifically designed annotation scheme. As a result, a new data set was created where all anaphora and coreference instances in the entailing sentences which are relevant to the entailment judgment are solved and annotated.. A by-product of the annotation is a new augmented data set, where all the referring expressions which need to be resolved in the entailing sentences are replaced by explicit expressions. Starting from the final output of the annotation, the actual impact of discourse phenomena on inference engines was investigated, identifying the kind of operations that the systems need to apply to address discourse phenomena and trying to find direct mappings between these operation and annotation types.