Machine learning models have made incredible progress, but they still struggle when applied to examples from unseen domains. This study focuses on a specific problem of domain generalization, where a model is trained on one source domain and tested on multiple target domains that are unseen during training. We propose IMO: Invariant features Masks for Out-of-Distribution text classification, to achieve OOD generalization by learning invariant features. During training, IMO would learn sparse mask layers to remove irrelevant features for prediction, where the remaining features keep invariant. Additionally, IMO has an attention module at the token level to focus on tokens that are useful for prediction. Our comprehensive experiments show that IMO substantially outperforms strong baselines in terms of various evaluation metrics and settings.
Document-level neural machine translation (DocNMT) aims to generate translations that are both coherent and cohesive, in contrast to its sentence-level counterpart. However, due to its longer input length and limited availability of training data, DocNMT often faces the challenge of data sparsity. To overcome this issue, we propose a novel Importance-Aware Data Augmentation (IADA) algorithm for DocNMT that augments the training data based on token importance information estimated by the norm of hidden states and training gradients. We conduct comprehensive experiments on three widely-used DocNMT benchmarks. Our empirical results show that our proposed IADA outperforms strong DocNMT baselines as well as several data augmentation approaches, with statistical significance on both sentence-level and document-level BLEU.
Large Multimodal Models (LMMs) have achieved great success recently, demonstrating a strong capability to understand multimodal information and to interact with human users. Despite the progress made, the challenge of detecting high-risk interactions in multimodal settings, and in particular in speech modality, remains largely unexplored. Conventional research on risk for speech modality primarily emphasises the content (e.g., what is captured as transcription). However, in speech-based interactions, paralinguistic cues in audio can significantly alter the intended meaning behind utterances. In this work, we propose a speech-specific risk taxonomy, covering 8 risk categories under hostility (malicious sarcasm and threats), malicious imitation (age, gender, ethnicity), and stereotypical biases (age, gender, ethnicity). Based on the taxonomy, we create a small-scale dataset for evaluating current LMMs capability in detecting these categories of risk. We observe even the latest models remain ineffective to detect various paralinguistic-specific risks in speech (e.g., Gemini 1.5 Pro is performing only slightly above random baseline). Warning: this paper contains biased and offensive examples.
Large language models (LLMs) are typically fine-tuned on diverse and extensive datasets sourced from various origins to develop a comprehensive range of skills, such as writing, reasoning, chatting, coding, and more. Each skill has unique characteristics, and these datasets are often heterogeneous and imbalanced, making the fine-tuning process highly challenging. Balancing the development of each skill while ensuring the model maintains its overall performance requires sophisticated techniques and careful dataset curation. In this work, we propose a general, model-agnostic, reinforcement learning framework, Mixture-of-Skills (MoS), that learns to optimize data usage automatically during the fine-tuning process. This framework ensures the optimal comprehensive skill development of LLMs by dynamically adjusting the focus on different datasets based on their current learning state. To validate the effectiveness of MoS, we conduct extensive experiments using three diverse LLM backbones on two widely used benchmarks and demonstrate that MoS substantially enhances model performance. Building on the success of MoS, we propose MoSpec, an adaptation for task-specific fine-tuning, which harnesses the utilities of various datasets for a specific purpose. Our work underlines the significance of dataset rebalancing and present MoS as a powerful, general solution for optimizing data usage in the fine-tuning of LLMs for various purposes.
Negotiation is a crucial ability in human communication. Recently, there has been a resurgent research interest in negotiation dialogue systems, whose goal is to create intelligent agents that can assist people in resolving conflicts or reaching agreements. Although there have been many explorations into negotiation dialogue systems, a systematic review of this task has not been performed to date. We aim to fill this gap by investigating recent studies in the field of negotiation dialogue systems, and covering benchmarks, evaluations and methodologies within the literature. We also discuss potential future directions, including multi-modal, multi-party and cross-cultural negotiation scenarios. Our goal is to provide the community with a systematic overview of negotiation dialogue systems and to inspire future research.
Norm violations occur when individuals fail to conform to culturally accepted behaviors, which may lead to potential conflicts. Remediating norm violations requires social awareness and cultural sensitivity of the nuances at play. To equip interactive AI systems with a remediation ability, we offer ReNoVi — a large-scale corpus of 9,258 multi-turn dialogues annotated with social norms, as well as define a sequence of tasks to help understand and remediate norm violations step by step. ReNoVi consists of two parts: 512 human-authored dialogues (real data), and 8,746 synthetic conversations generated by ChatGPT through prompt learning. While collecting sufficient human-authored data is costly, synthetic conversations provide suitable amounts of data to help mitigate the scarcity of training data, as well as the chance to assess the alignment between LLMs and humans in the awareness of social norms. We thus harness the power of ChatGPT to generate synthetic training data for our task. To ensure the quality of both human-authored and synthetic data, we follow a quality control protocol during data collection. Our experimental results demonstrate the importance of remediating norm violations in socio-cultural conversations, as well as the improvement in performance obtained from synthetic data.
We develop assistive agents based on Large Language Models (LLMs) that aid interlocutors in business negotiations.Specifically, we simulate business negotiations by letting two LLM-based agents engage in role play. A third LLM acts as a remediator agent to rewrite utterances violating norms for improving negotiation outcomes.We introduce a simple tuning-free and label-free In-Context Learning (ICL) method to identify high-quality ICL exemplars for the remediator, where we propose a novel select criteria, called value impact, to measure the quality of the negotiation outcomes. We provide rich empirical evidence to demonstrate its effectiveness in negotiations across three different negotiation topics. We have released our source code and the generated dataset at: https://github.com/tk1363704/SADAS.
This paper tackles the task of emotion-cause pair extraction in the unsupervised domain adaptation setting.The problem is challenging as the distributions of the events causing emotions in target domains are dramatically different than those in source domains, despite the distributions of emotional expressions between domains are overlapped. Inspired by causal discovery,we propose a novel deep latent model in the variational autoencoder (VAE) framework, which not only captures the underlying latent structures of data but also utilizes the easily transferable knowledge of emotions as the bridge to link the distributions of events in different domains. To facilitate knowledge transfer across domains, we also propose a novel variational posterior regularization technique to disentangle the latent representations of emotions from those of events in order to mitigate the damage caused by the spurious correlations related to the events in source domains. Through extensive experiments, we demonstrate that our model outperforms the strongest baseline by approximately 11.05% on a Chinese benchmark and 2.45% on a English benchmark in terms of weighted-average F1 score. We have released our source code and the generated dataset publicly at: https://github.com/tk1363704/CAREL-VAE.
With the growing privacy concerns surrounding natural language understanding (NLU) applications, the need to train high-quality models while safeguarding data privacy has reached unprecedented importance. Federated learning (FL) offers a promising approach to collaborative model training by exchanging model gradients. However, many studies show that eavesdroppers in FL could develop sophisticated data reconstruction attack (DRA) to accurately reconstruct clients’ data from the shared gradients. Regrettably, current DRA methods in federated NLU have been mostly conducted on public datasets, lacking a comprehensive evaluation of real-world privacy datasets. To address this limitation, this paper presents a pioneering study that reexamines the performance of these DRA methods as well as corresponding defense methods. Specifically, we introduce a novel real-world privacy dataset called FedAttack which leads to a significant discovery: existing DRA methods usually fail to accurately recover the original text of real-world privacy data. In detail, the tokens within a recovery sentence are disordered and intertwined with tokens from other sentences in the same training batch. Moreover, our experiments demonstrate that the performance of DRA is also influenced by different languages and domains. By discovering these findings, our work lays a solid foundation for further research into the development of more practical DRA methods and corresponding defenses.
The inevitable private information in legal data necessitates legal artificial intelligence to study privacy-preserving and decentralized learning methods. Federated learning (FL) has merged as a promising technique for multiple participants to collaboratively train a shared model while efficiently protecting the sensitive data of participants. However, to the best of our knowledge, there is no work on applying FL to legal NLP. To fill this gap, this paper presents the first real-world FL benchmark for legal NLP, coined FEDLEGAL, which comprises five legal NLP tasks and one privacy task based on the data from Chinese courts. Based on the extensive experiments on these datasets, our results show that FL faces new challenges in terms of real-world non-IID data. The benchmark also encourages researchers to investigate privacy protection using real-world data in the FL setting, as well as deploying models in resource-constrained scenarios. The code and datasets of FEDLEGAL are available here.
Multilingual semantic parsing aims to leverage the knowledge from the high-resource languages to improve low-resource semantic parsing, yet commonly suffers from the data imbalance problem. Prior works propose to utilize the translations by either humans or machines to alleviate such issues. However, human translations are expensive, while machine translations are cheap but prone to error and bias. In this work, we propose an active learning approach that exploits the strengths of both human and machine translations by iteratively adding small batches of human translations into the machine-translated training set. Besides, we propose novel aggregated acquisition criteria that help our active learning method select utterances to be manually translated. Our experiments demonstrate that an ideal utterance selection can significantly reduce the error and bias in the translated data, resulting in higher parser accuracies than the parsers merely trained on the machine-translated data.
Flowchart-grounded troubleshooting dialogue (FTD) systems, which follow the instructions of a flowchart to diagnose users’ problems in specific domains (e.g., vehicle, laptop), have been gaining research interest in recent years. However, collecting sufficient dialogues that are naturally grounded on flowcharts is costly, thus FTD systems are impeded by scarce training data. To mitigate the data sparsity issue, we propose a plan-based synthetic data generation (PlanSDG) approach that generates diverse synthetic dialog data at scale by transforming concise flowchart into dialogues. Specifically, its generative model employs a variational-base framework with a hierarchical planning strategy that includes global and local latent planning variables. Experiments on the FloDial dataset show that synthetic dialogue produced by PlanSDG improves the performance of downstream tasks, including flowchart path retrieval and response generation, in particular on the Out-of-Flowchart settings. In addition, further analysis demonstrate the quality of synthetic data generated by PlanSDG in paths that are covered by current sample dialogues and paths that are not covered.
Existing work in document-level neural machine translation commonly concatenates several consecutive sentences as a pseudo-document, and then learns inter-sentential dependencies. This strategy limits the model’s ability to leverage information from distant context. We overcome this limitation with a novel Document Flattening (DocFlat) technique that integrates Flat-Batch Attention (FBA) and Neural Context Gate (NCG) into Transformer model to utilizes information beyond the pseudo-document boundaries. FBA allows the model to attend to all the positions in the batch and model the relationships between positions explicitly and NCG identifies the useful information from the distant context. We conduct comprehensive experiments and analyses on three benchmark datasets for English-German translation, and validate the effectiveness of two variants of DocFlat. Empirical results show that our approach outperforms strong baselines with statistical significance on BLEU, COMET and accuracy on the contrastive test set. The analyses highlight that DocFlat is highly effective in capturing the long-range information.
Annually, e-commerce platforms incur substantial financial losses due to trademark infringements, making it crucial to identify and mitigate potential legal risks tied to merchant information registered to the platforms. However, the absence of high-quality datasets hampers research in this area. To address this gap, our study introduces TMID, a novel dataset to detect trademark infringement in merchant registrations. This is a real-world dataset sourced directly from Alipay, one of the world’s largest e-commerce and digital payment platforms. As infringement detection is a legal reasoning task requiring an understanding of the contexts and legal rules, we offer a thorough collection of legal rules and merchant and trademark-related contextual information with annotations from legal experts. We ensure the data quality by performing an extensive statistical analysis. Furthermore, we conduct an empirical study on this dataset to highlight its value and the key challenges. Through this study, we aim to contribute valuable resources to advance research into legal compliance related to trademark infringement within the e-commerce sphere.
We introduce ViLPAct, a novel vision-language benchmark for human activity planning. It is designed for a task where embodied AI agents can reason and forecast future actions of humans based on video clips about their initial activities and intents in text. The dataset consists of 2.9k videos from Charades extended with intents via crowdsourcing, a multi-choice question test set, and four strong baselines. One of the baselines implements a neurosymbolic approach based on a multi-modal knowledge base (MKB), while the other ones are deep generative models adapted from recent state-of-the-art (SOTA) methods. According to our extensive experiments, the key challenges are compositional generalization and effective use of information from both modalities.
Textual scene graph parsing has become increasingly important in various vision-language applications, including image caption evaluation and image retrieval. However, existing scene graph parsers that convert image captions into scene graphs often suffer from two types of errors. First, the generated scene graphs fail to capture the true semantics of the captions or the corresponding images, resulting in a lack of faithfulness. Second, the generated scene graphs have high inconsistency, with the same semantics represented by different annotations. To address these challenges, we propose a novel dataset, which involves re-annotating the captions in Visual Genome (VG) using a new intermediate representation called FACTUAL-MR. FACTUAL-MR can be directly converted into faithful and consistent scene graph annotations. Our experimental results clearly demonstrate that the parser trained on our dataset outperforms existing approaches in terms of faithfulness and consistency. This improvement leads to a significant performance boost in both image caption evaluation and zero-shot image retrieval tasks. Furthermore, we introduce a novel metric for measuring scene graph similarity, which, when combined with the improved scene graph parser, achieves state-of-the-art (SOTA) results on multiple benchmark datasets for the aforementioned tasks.
With increasing concerns about data privacy, there is an increasing necessity of fine-tuning pre-trained language models (PLMs) for adapting to downstream tasks located in end-user devices or local clients without transmitting data to the central server. This urgent necessity therefore calls the research of investigating federated learning (FL) for PLMs. However, large PLMs bring the curse of prohibitive communication overhead and local model adaptation costs for the FL system. To this end, we investigate the parameter-efficient tuning (PETuning) of PLMs and develop a corresponding federated benchmark for four representative PETuning methods, dubbed FedPETuning. Specifically, FedPETuning provides the first holistic empirical study of representative PLMs tuning methods in FL, covering privacy attacks, performance comparisons, and resource-constrained analysis. Intensive experimental results have indicated that FedPETuning can efficiently defend against privacy attacks and maintains acceptable performance with reducing heavy resource consumption. The open-source code and data are available at https://github.com/SMILELab-FL/FedPETuning.
In this work, we study the language model backbone replacement problem for personalized downstream tasks in a non-stationary on-device scenario. In real world, company may periodically update the knowledge and architectures of backbones to keep the competitive in the market, meanwhile, to accommodate the users’ own preference, models are personalized to fit users’ own distribution locally. Traditional full model tuning or transfer learning for such replacements often incur considerable local device training costs and necessitate extensive backpropagation within deep transformer layers. Addressing this issue, we propose a novel, lightweight tuning method for personalized NLP classification tasks post-backbone replacement. Our approach leverages a personalized matrix calculated from documents corresponding to users’ old and new backbones. This matrix facilitates top-layer parameter tuning, drastically reducing backpropagation computation. To further mitigate training costs associated with matrix linear optimization, we employ correlation clustering to curate a few examples from personalized cluster sets for individuals. Our method achieves over 1000 times computation reduction in Flops for backpropagation and brings the user-specific initialization for personal matrix yielding significant performance boost compared with popular transfer learning methods.
Large Language Models (LLMs), such as ChatGPT, have drawn a lot of attentions recently in the legal domain due to its emergent ability to tackle a variety of legal tasks. However, it is still unknown if LLMs are able to analyze a legal case and perform reasoning in the same manner as lawyers. Therefore, we constructed a novel corpus consisting of scenarios pertain to Contract Acts Malaysia and Australian Social Act for Dependent Child. ChatGPT is applied to perform analysis on the corpus using the IRAC method, which is a framework widely used by legal professionals for organizing legal analysis. Each scenario in the corpus is annotated with a complete IRAC analysis in a semi-structured format so that both machines and legal professionals are able to interpret and understand the annotations. In addition, we conducted the first empirical assessment of ChatGPT for IRAC analysis in order to understand how well it aligns with the analysis of legal professionals. Our experimental results shed lights on possible future research directions to improve alignments between LLMs and legal experts in terms of legal reasoning.
In this paper, we conduct the first study on spurious correlations for open-domain response generation models based on a corpus CGDialog curated by ourselves. The current models indeed suffer from spurious correlations and have a tendency to generate irrelevant and generic responses. Inspired by causal discovery algorithms, we propose a novel model-agnostic method for training and inference using a conditional independence classifier. The classifier is trained by a constrained self-training method, coined ConSTrain, to overcome data sparsity. The experimental results based on both human and automatic evaluation show that our method significantly outperforms the competitive baselines in terms of relevance, informativeness, and fluency.
Machine-learning-as-a-service (MLaaS) has attracted millions of users to their splendid large-scale models. Although published as black-box APIs, the valuable models behind these services are still vulnerable to imitation attacks. Recently, a series of works have demonstrated that attackers manage to steal or extract the victim models. Nonetheless, none of the previous stolen models can outperform the original black-box APIs. In this work, we conduct unsupervised domain adaptation and multi-victim ensemble to showing that attackers could potentially surpass victims, which is beyond previous understanding of model extraction. Extensive experiments on both benchmark datasets and real-world APIs validate that the imitators can succeed in outperforming the original black-box models on transferred domains. We consider our work as a milestone in the research of imitation attack, especially on NLP APIs, as the superior performance could influence the defense or even publishing strategy of API providers.
With the necessity of privacy protection, it becomes increasingly vital to train deep neural models in a federated learning manner for natural language processing (NLP) tasks. However, recent studies show eavesdroppers (i.e., dishonest servers) can still reconstruct the private input in federated learning (FL). Such a data reconstruction attack relies on the mappings between vocabulary and associated word embedding in NLP tasks, which are unfortunately less studied in current FL methods. In this paper, we propose a fedrated model decomposition method that protects the privacy of vocabularies, shorted as FEDEVOCAB. In FEDEVOCAB, each participant keeps the local embedding layer in the local device and detaches the local embedding parameters from federated aggregation. However, it is challenging to train an accurate NLP model when the private mappings are unknown and vary across participants in a cross-device FL setting. To address this problem, we further propose an adaptive updating technique to improve the performance of local models. Experimental results show that FEDEVOCAB maintains competitive performance and provides better privacy-preserving capacity compared to status quo methods.
In this paper, we propose a variational autoencoder with disentanglement priors, VAE-Dprior, for task-specific natural language generation with none or a handful of task-specific labeled examples. In order to tackle compositional generalization across tasks, our model performs disentangled representation learning by introducing a conditional prior for the latent content space and another conditional prior for the latent label space. Both types of priors satisfy a novel property called 𝜖-disentangled. We show both empirically and theoretically that the novel priors can disentangle representations even without specific regularizations as in the prior work. The content prior enables directly sampling diverse content representations from the content space learned from the seen tasks, and fuse them with the representations of novel tasks for generating semantically diverse texts in the low-resource settings. Our extensive experiments demonstrate the superior performance of our model over competitive baselines in terms of i) data augmentation in continuous zero/few-shot learning, and ii) text style transfer in the few-shot setting.
Commonsense reasoning aims to incorporate sets of commonsense facts, retrieved from Commonsense Knowledge Graphs (CKG), to draw conclusion about ordinary situations. The dynamic nature of commonsense knowledge postulates models capable of performing multi-hop reasoning over new situations. This feature also results in having large-scale sparse Knowledge Graphs, where such reasoning process is needed to predict relations between new events. However, existing approaches in this area are limited by considering CKGs as a limited set of facts, thus rendering them unfit for reasoning over new unseen situations and events. In this paper, we present a neural-symbolic reasoner, which is capable of reasoning over large-scale dynamic CKGs. The logic rules for reasoning over CKGs are learned during training by our model. In addition to providing interpretable explanation, the learned logic rules help to generalise prediction to newly introduced events. Experimental results on the task of link prediction on CKGs prove the effectiveness of our model by outperforming the state-of-the-art models.
In this work, we investigate the problems of semantic parsing in a few-shot learning setting. In this setting, we are provided with k utterance-logical form pairs per new predicate. The state-of-the-art neural semantic parsers achieve less than 25% accuracy on benchmark datasets when k = 1. To tackle this problem, we proposed to i) apply a designated meta-learning method to train the model; ii) regularize attention scores with alignment statistics; iii) apply a smoothing technique in pretraining. As a result, our method consistently outperforms all the baselines in both one and two-shot settings.
Semantic parsing maps natural language (NL) utterances into logical forms (LFs), which underpins many advanced NLP problems. Semantic parsers gain performance boosts with deep neural networks, but inherit vulnerabilities against adversarial examples. In this paper, we provide the first empirical study on the robustness of semantic parsers in the presence of adversarial attacks. Formally, adversaries of semantic parsing are considered to be the perturbed utterance-LF pairs, whose utterances have exactly the same meanings as the original ones. A scalable methodology is proposed to construct robustness test sets based on existing benchmark corpora. Our results answered five research questions in measuring the sate-of-the-art parsers’ performance on robustness test sets, and evaluating the effect of data augmentation.
This paper investigates continual learning for semantic parsing. In this setting, a neural semantic parser learns tasks sequentially without accessing full training data from previous tasks. Direct application of the SOTA continual learning algorithms to this problem fails to achieve comparable performance with re-training models with all seen tasks because they have not considered the special properties of structured outputs yielded by semantic parsers. Therefore, we propose TotalRecall, a continual learning method designed for neural semantic parsers from two aspects: i) a sampling method for memory replay that diversifies logical form templates and balances distributions of parse actions in a memory; ii) a two-stage training method that significantly improves generalization capability of the parsers across tasks. We conduct extensive experiments to study the research problems involved in continual semantic parsing and demonstrate that a neural semantic parser trained with TotalRecall achieves superior performance than the one trained directly with the SOTA continual learning algorithms and achieve a 3-6 times speedup compared to re-training from scratch.
The ability to generate natural-language questions with controlled complexity levels is highly desirable as it further expands the applicability of question generation. In this paper, we propose an end-to-end neural complexity-controllable question generation model, which incorporates a mixture of experts (MoE) as the selector of soft templates to improve the accuracy of complexity control and the quality of generated questions. The soft templates capture question similarity while avoiding the expensive construction of actual templates. Our method introduces a novel, cross-domain complexity estimator to assess the complexity of a question, taking into account the passage, the question, the answer and their interactions. The experimental results on two benchmark QA datasets demonstrate that our QG model is superior to state-of-the-art methods in both automatic and manual evaluation. Moreover, our complexity estimator is significantly more accurate than the baselines in both in-domain and out-domain settings.
Semantic parsing is the task of translating natural language utterances into machine-readable meaning representations. Currently, most semantic parsing methods are not able to utilize the contextual information (e.g. dialogue and comments history), which has a great potential to boost the semantic parsing systems. To address this issue, context dependent semantic parsing has recently drawn a lot of attention. In this survey, we investigate progress on the methods for the context dependent semantic parsing, together with the current datasets and tasks. We then point out open problems and challenges for future research in this area.
Commonsense reasoning refers to the ability of evaluating a social situation and acting accordingly. Identification of the implicit causes and effects of a social context is the driving capability which can enable machines to perform commonsense reasoning. The dynamic world of social interactions requires context-dependent on-demand systems to infer such underlying information. However, current approaches in this realm lack the ability to perform commonsense reasoning upon facing an unseen situation, mostly due to incapability of identifying a diverse range of implicit social relations. Hence they fail to estimate the correct reasoning path. In this paper, we present Conditional Seq2Seq-based Mixture model (CosMo), which provides us with the capabilities of dynamic and diverse content generation. We use CosMo to generate context-dependent clauses, which form a dynamic Knowledge Graph (KG) on-the-fly for commonsense reasoning. To show the adaptability of our model to context-dependant knowledge generation, we address the task of zero-shot commonsense question answering. The empirical results indicate an improvement of up to +5.2% over the state-of-the-art models.
The global market size of conversational assistants (chatbots) is expected to grow to USD 9.4 billion by 2024, according to MarketsandMarkets. Despite the wide use of chatbots, leakage of personal information through chatbots poses serious privacy concerns for their users. In this work, we propose to protect personal information by warning users of detected suspicious sentences generated by conversational assistants. The detection task is formulated as an alignment optimization problem and a new dataset PERSONA-LEAKAGE is collected for evaluation. In this paper, we propose two novel constrained alignment models, which consistently outperform baseline methods on Moreover, we conduct analysis on the behavior of recently proposed personalized chit-chat dialogue systems. The empirical results show that those systems suffer more from personal information disclosure than the widely used Seq2Seq model and the language model. In those cases, a significant number of information leaking utterances can be detected by our models with high precision.
In this paper, we describe ALTER, an auxiliary text rewriting tool that facilitates the rewriting process for natural language generation tasks, such as paraphrasing, text simplification, fairness-aware text rewriting, and text style transfer. Our tool is characterized by two features, i) recording of word-level revision histories and ii) flexible auxiliary edit support and feedback to annotators. The text rewriting assist and traceable rewriting history are potentially beneficial to the future research of natural language generation.
Biased decisions made by automatic systems have led to growing concerns in research communities. Recent work from the NLP community focuses on building systems that make fair decisions based on text. Instead of relying on unknown decision systems or human decision-makers, we argue that a better way to protect data providers is to remove the trails of sensitive information before publishing the data. In light of this, we propose a new privacy-aware text rewriting task and explore two privacy-aware back-translation methods for the task, based on adversarial training and approximate fairness risk. Our extensive experiments on three real-world datasets with varying demographical attributes show that our methods are effective in obfuscating sensitive attributes. We have also observed that the fairness risk method retains better semantics and fluency, while the adversarial training method tends to leak less sensitive information.
In social media, demographic inference is a critical task in order to gain a better understanding of a cohort and to facilitate interacting with one’s audience. Most previous work has made independence assumptions over topological, textual and label information on social networks. In this work, we employ recursive neural networks to break down these independence assumptions to obtain inference about demographic characteristics on Twitter. We show that our model performs better than existing models including the state-of-the-art.
Extracting instances of sentiment-oriented relations from user-generated web documents is important for online marketing analysis. Unlike previous work, we formulate this extraction task as a structured prediction problem and design the corresponding inference as an integer linear program. Our latent structural SVM based model can learn from training corpora that do not contain explicit annotations of sentiment-bearing expressions, and it can simultaneously recognize instances of both binary (polarity) and ternary (comparative) relations with regard to entity mentions of interest. The empirical evaluation shows that our approach significantly outperforms state-of-the-art systems across domains (cameras and movies) and across genres (reviews and forum posts). The gold standard corpus that we built will also be a valuable resource for the community.