Ensuring that the benefits of sign language technologies are distributed equitably among all community members is crucial. Thus, it is important to address potential biases and inequities that may arise from the design or use of these resources. Crowd-sourced sign language datasets, such as the ASL Citizen dataset, are great resources for improving accessibility and preserving linguistic diversity, but they must be used thoughtfully to avoid reinforcing existing biases.In this work, we utilize the rich information about participant demographics and lexical features present in the ASL Citizen dataset to study and document the biases that may result from models trained on crowd-sourced sign datasets. Further, we apply several bias mitigation techniques during model training, and find that these techniques reduce performance disparities without decreasing accuracy. With the publication of this work, we release the demographic information about the participants in the ASL Citizen dataset to encourage future bias mitigation work in this space.
Ensuring robust safety measures across a wide range of scenarios is crucial for user-facing systems. While Large Language Models (LLMs) can generate valuable data for safety measures, they often exhibit distributional biases, focusing on common scenarios and neglecting rare but critical cases. This can undermine the effectiveness of safety protocols developed using such data. To address this, we propose a novel framework that integrates active learning with clustering to guide LLM generation, enhancing their representativeness and robustness in safety scenarios. We demonstrate the effectiveness of our approach by constructing a dataset of 5.4K potential safety violations through an iterative process involving LLM generation and an active learner model’s feedback. Our results show that the proposed framework produces a more representative set of safety scenarios without requiring prior knowledge of the underlying data distribution. Additionally, data acquired through our method improves the accuracy and F1 score of both the active learner model as well models outside the scope of active learning process, highlighting its broad applicability.
Effective interlocutors account for the uncertain goals, beliefs, and emotions of others. But even the best human conversationalist cannot perfectly anticipate the trajectory of a dialogue. How well can language models represent inherent uncertainty in conversations? We propose FortUne Dial, an expansion of the long-standing “conversation forecasting” task: instead of just accuracy, evaluation is conducted with uncertainty-aware metrics, effectively enabling abstention on individual instances. We study two ways in which language models potentially represent outcome uncertainty (internally, using scores and directly, using tokens) and propose fine-tuning strategies to improve calibration of both representations. Experiments on eight difficult negotiation corpora demonstrate that our proposed fine-tuning strategies (a traditional supervision strategy and an off-policy reinforcement learning strategy) can calibrate smaller open-source models to compete with pre-trained models 10x their size.
We introduce a goal-oriented conversational AI system enhanced with American Sign Language (ASL) instructions, presenting the first implementation of such a system on a worldwide multimodal conversational AI platform. Accessible through a touch-based interface, our system receives input from users and seamlessly generates ASL instructions by leveraging retrieval methods and cognitively based gloss translations. Central to our design is a sign translation module powered by Large Language Models, alongside a token-based video retrieval system for delivering instructional content from recipes and wikiHow guides. Our development process is deeply rooted in a commitment to community engagement, incorporating insights from the Deaf and Hard-of-Hearing community, as well as experts in cognitive and ASL learning sciences. The effectiveness of our signing instructions is validated by user feedback, achieving ratings on par with those of the system in its non-signing variant. Additionally, our system demonstrates exceptional performance in retrieval accuracy and text-generation quality, measured by metrics such as BERTScore. We have made our codebase and datasets publicly accessible at https://github.com/Merterm/signed-dialogue, and a demo of our signed instruction video retrieval system is available at https://huggingface.co/spaces/merterm/signed-instructions.
While demographic factors like age and gender change the way people talk, and in particular, the way people talk to machines, there is little investigation into how large pre-trained language models (LMs) can adapt to these changes. To remedy this gap, we consider how demographic factors in LM language skills can be measured to determine compatibility with a target demographic. We suggest clinical techniques from Speech Language Pathology, which has norms for acquisition of language skills in humans. We conduct evaluation with a domain expert (i.e., a clinically licensed speech language pathologist), and also propose automated techniques to complement clinical evaluation at scale. Empirically, we focus on age, finding LM capability varies widely depending on task: GPT-3.5 mimics the ability of humans ranging from age 6-15 at tasks requiring inference, and simultaneously, outperforms a typical 21 year old at memorization. GPT-3.5 also has trouble with social language use, exhibiting less than 50% of the tested pragmatic skills. Findings affirm the importance of considering demographic alignment and conversational goals when using LMs as public-facing tools. Code, data, and a package will be available.
Conversation forecasting tasks a model with predicting the outcome of an unfolding conversation. For instance, it can be applied in social media moderation to predict harmful user behaviors before they occur, allowing for preventative interventions. While large language models (LLMs) have recently been proposed as an effective tool for conversation forecasting, it’s unclear what biases they may have, especially against forecasting the (potentially harmful) outcomes we request them to predict during moderation. This paper explores to what extent model uncertainty can be used as a tool to mitigate potential biases. Specifically, we ask three primary research questions: 1) how does LLM forecasting accuracy change when we ask models to represent their uncertainty; 2) how does LLM bias change when we ask models to represent their uncertainty; 3) how can we use uncertainty representations to reduce or completely mitigate biases without many training data points. We address these questions for 5 open-source language models tested on 2 datasets designed to evaluate conversation forecasting for social media moderation.
Large language models (LLMs) are capable of generating well-formed responses, but using LLMs to generate responses on the fly is not yet feasible for many task-oriented systems. Modular architectures are often still required for safety and privacy guarantees on the output. We hypothesize that an offline generation approach using discourse theories, formal grammar rules, and LLMs can allow us to generate human-like, coherent text in a more efficient, robust, and inclusive manner within a task-oriented setting. To this end, we present the first discourse-aware multimodal task-oriented dialogue system that combines discourse theories with offline LLM generation. We deploy our bot as an app to the general public and keep track of the user ratings for six months. Our user ratings show an improvement from 2.8 to 3.5 out of 5 with the introduction of discourse coherence theories. We also show that our model reduces misunderstandings in the dialect of African-American Vernacular English from 93% to 57%. While terms of use prevent us from releasing our entire codebase, we release our code in a format that can be integrated into most existing dialogue systems.
Context influences how we engage with multimodal documents. Describing and processing the content of images is highly correlated with the goals of the discourse. It is known that these underlying cognitive processes can be tapped into by looking at eye movements, but the connection between discourse goals and eye movements is a missing link. In this study, we carry out both augmented reality and webcam-based eye-tracking experiments during comprehension and production tasks. We build on computational frameworks of coherence in text and images that study causal, logical, elaborative, and temporal inferences to understand how eye gaze patterns and coherence relations influence each other. No state-of-the-art techniques exist to analyze eye movements in multimodal language settings. So, we introduce a new eye gaze pattern ranking algorithm and a semantic gaze visualization technique to study this phenomenon better. Our results demonstrate that eye gaze durations are person-dependent, and during comprehension and production, ranked gaze patterns are significantly different for different types of coherence relations. We also present a case study of how Multimodal Large Language Models represent this connection of eye gaze patterns and coherence relations. We make all of our code and novel analysis tools available through https://github.com/Merterm/eye-gaze-coherence.
The ingrained principles of fairness in a dialogue system’s decision-making process and generated responses are crucial for user engagement, satisfaction, and task achievement. Absence of equitable and inclusive principles can hinder the formation of common ground, which in turn negatively impacts the overall performance of the system. For example, misusing pronouns in a user interaction may cause ambiguity about the intended subject. Yet, there is no comprehensive study of equitable text generation in dialogue. Aptly, in this work, we use theories of computational learning to study this problem. We provide formal definitions of equity in text generation, and further, prove formal connections between learning human-likeness and learning equity: algorithms for improving equity ultimately reduce to algorithms for improving human-likeness (on augmented data). With this insight, we also formulate reasonable conditions under which text generation algorithms can learn to generate equitable text without any modifications to the biased training data on which they learn. To exemplify our theory in practice, we look at a group of algorithms for the GuessWhat?! visual dialogue game and, using this example, test our theory empirically. Our theory accurately predicts relative-performance of multiple algorithms in generating equitable text as measured by both human and automated evaluation.
Patients who effectively manage their symptoms often demonstrate higher levels of engagement in conversations and interventions with healthcare practitioners. This engagement is multifaceted, encompassing cognitive and social dimensions. Consequently, it is crucial for AI systems to understand the engagement in natural conversations between patients and practitioners to better contribute toward patient care. In this paper, we present a novel dataset (MedNgage), which consists of patient-nurse conversations about cancer symptom management. We manually annotate the dataset with a novel framework of categories of patient engagement from two different angles, namely: i) socio-affective engagement (3.1K spans), and ii) cognitive engagement (1.8K spans). Through statistical analysis of the data that is annotated using our framework, we show a positive correlation between patient symptom management outcomes and their engagement in conversations. Additionally, we demonstrate that pre-trained transformer models fine-tuned on our dataset can reliably predict engagement categories in patient-nurse conversations. Lastly, we use LIME (Ribeiro et al., 2016) to analyze the underlying challenges of the tasks that state-of-the-art transformer models encounter. The de-identified data is available for research purposes upon request.
Despite recent advancements, NLP models continue to be vulnerable to bias. This bias often originates from the uneven distribution of real-world data and can propagate through the annotation process. Escalated integration of these models in our lives calls for methods to mitigate bias without overbearing annotation costs. While active learning (AL) has shown promise in training models with a small amount of annotated data, AL’s reliance on the model’s behavior for selective sampling can lead to an accumulation of unwanted bias rather than bias mitigation. However, infusing clustering with AL can overcome the bias issue of both AL and traditional annotation methods while exploiting AL’s annotation efficiency. In this paper, we propose a novel adaptive clustering-based active learning algorithm, D-CALM, that dynamically adjusts clustering and annotation efforts in response to an estimated classifier error-rate. Experiments on eight datasets for a diverse set of text classification tasks, including emotion, hatespeech, dialog act, and book type detection, demonstrate that our proposed algorithm significantly outperforms baseline AL approaches with both pretrained transformers and traditional Support Vector Machines. D-CALM showcases robustness against different measures of information gain and, as evident from our analysis of label and error distribution, can significantly reduce unwanted model bias.
Understanding uncertainty plays a critical role in achieving common ground (Clark et al., 1983). This is especially important for multimodal AI systems that collaborate with users to solve a problem or guide the user through a challenging concept. In this work, for the first time, we present a dataset annotated in collaboration with developmental and cognitive psychologists for the purpose of studying nonverbal cues of uncertainty. We then present an analysis of the data, studying different roles of uncertainty and its relationship with task difficulty and performance. Lastly, we present a multimodal machine learning model that can predict uncertainty given a real-time video clip of a participant, which we find improves upon a baseline multimodal transformer model. This work informs research on cognitive coordination between human-human and human-AI and has broad implications for gesture understanding and generation. The anonymized version of our data and code will be publicly available upon the completion of the required consent forms and data sheets.
Data scarcity has been a long standing issue in the field of open-domain social dialogue. To quench this thirst, we present SODA: the first publicly available, million-scale high-quality social dialogue dataset. By contextualizing social commonsense knowledge from a knowledge graph, we are able to distill an exceptionally broad spectrum of social interactions from a large language model. Human evaluation shows that conversations in SODA are more consistent, specific, and (surprisingly) natural than those in prior human-authored datasets. Using SODA, we train COSMO: a generalizable conversation model that is significantly more natural and consistent on unseen datasets than best-performing conversation models (e.g., GODEL, BlenderBot-1, Koala, Vicuna). Experiments reveal COSMO is sometimes even preferred to the original human-written gold responses. Additionally, our results shed light on the distinction between knowledge-enriched conversations and natural social chitchats. We plan to make our data, model, and code public.
Tongue twisters are meaningful sentences that are difficult to pronounce. The process of automatically generating tongue twisters is challenging since the generated utterance must satisfy two conditions at once: phonetic difficulty and semantic meaning. Furthermore, phonetic difficulty is itself hard to characterize and is expressed in natural tongue twisters through a heterogeneous mix of phenomena such as alliteration and homophony. In this paper, we propose PANCETTA: Phoneme Aware Neural Completion to Elicit Tongue Twisters Automatically. We leverage phoneme representations to capture the notion of phonetic difficulty, and we train language models to generate original tongue twisters on two proposed task settings. To do this, we curate a dataset called TT-Corp, consisting of existing English tongue twisters. Through automatic and human evaluation, as well as qualitative analysis, we show that PANCETTA generates novel, phonetically difficult, fluent, and semantically meaningful tongue twisters.
Current studies of bias in NLP rely mainly on identifying (unwanted or negative) bias towards a specific demographic group. While this has led to progress recognizing and mitigating negative bias, and having a clear notion of the targeted group is necessary, it is not always practical. In this work we extrapolate to a broader notion of bias, rooted in social science and psychology literature. We move towards predicting interpersonal group relationship (IGR) - modeling the relationship between the speaker and the target in an utterance - using fine-grained interpersonal emotions as an anchor. We build and release a dataset of English tweets by US Congress members annotated for interpersonal emotion - the first of its kind, and ‘found supervision’ for IGR labels; our analyses show that subtle emotional signals are indicative of different biases. While humans can perform better than chance at identifying IGR given an utterance, we show that neural models perform much better; furthermore, a shared encoding between IGR and interpersonal perceived emotion enabled performance gains in both tasks.
Content moderation is the process of flagging content based on pre-defined platform rules. There has been a growing need for AI moderators to safeguard users as well as protect the mental health of human moderators from traumatic content. While prior works have focused on identifying hateful/offensive language, they are not adequate for meeting the challenges of content moderation since 1) moderation decisions are based on violation of rules, which subsumes detection of offensive speech, and 2) such rules often differ across communities which entails an adaptive solution. We propose to study the challenges of content moderation by introducing a multilingual dataset of 1.8 Million Reddit comments spanning 56 subreddits in English, German, Spanish and French1. We perform extensive experimental analysis to highlight the underlying challenges and suggest related research problems such as cross-lingual transfer, learning under label noise (human biases), transfer of moderation models, and predicting the violated rule. Our dataset and analysis can help better prepare for the challenges and opportunities of auto moderation.
State-of-the-art sign language generation frameworks lack expressivity and naturalness which is the result of only focusing manual signs, neglecting the affective, grammatical and semantic functions of facial expressions. The purpose of this work is to augment semantic representation of sign language through grounding facial expressions. We study the effect of modeling the relationship between text, gloss, and facial expressions on the performance of the sign generation systems. In particular, we propose a Dual Encoder Transformer able to generate manual signs as well as facial expressions by capturing the similarities and differences found in text and sign gloss annotation. We take into consideration the role of facial muscle activity to express intensities of manual signs by being the first to employ facial action units in sign language generation. We perform a series of experiments showing that our proposed model improves the quality of automatically generated sign language.
This paper presents the results of the Second WMT Shared Task on Sign Language Translation (WMT-SLT23; https://www.wmt-slt.com/). This shared task is concerned with automatic translation between signed and spoken languages. The task is unusual in the sense that it requires processing visual information (such as video frames or human pose estimation) beyond the well-known paradigm of text-to-text machine translation (MT). The task offers four tracks involving the following languages: Swiss German Sign Language (DSGS), French Sign Language of Switzerland (LSF-CH), Italian Sign Language of Switzerland (LIS-CH), German, French and Italian. Four teams (including one working on a baseline submission) participated in this second edition of the task, all submitting to the DSGS-to-German track. Besides a system ranking and system papers describing state-of-the-art techniques, this shared task makes the following scientific contributions: novel corpora and reproducible baseline systems. Finally, the task also resulted in publicly available sets of system outputs and more human evaluation scores for sign language translation.
Analyzing ideology and polarization is of critical importance in advancing our grasp of modern politics. Recent research has made great strides towards understanding the ideological bias (i.e., stance) of news media along the left-right spectrum. In this work, we instead take a novel and more nuanced approach for the study of ideology based on its left or right positions on the issue being discussed. Aligned with the theoretical accounts in political science, we treat ideology as a multi-dimensional construct, and introduce the first diachronic dataset of news articles whose ideological positions are annotated by trained political scientists and linguists at the paragraph level. We showcase that, by controlling for the author’s stance, our method allows for the quantitative and temporal measurement and analysis of polarization as a multidimensional ideological distance. We further present baseline models for ideology prediction, outlining a challenging task distinct from stance detection.
Discourse analysis allows us to attain inferences of a text document that extend beyond the sentence-level. The current performance of discourse models is very low on texts outside of the training distribution’s coverage, diminishing the practical utility of existing models. There is need for a measure that can inform us to what extent our model generalizes from the training to the test sample when these samples may be drawn from distinct distributions. While this can be estimated via distribution shift, we argue that this does not directly correlate with change in the observed error of a classifier (i.e. error-gap). Thus, we propose to use a statistic from the theoretical domain adaptation literature which can be directly tied to error-gap. We study the bias of this statistic as an estimator of error-gap both theoretically and through a large-scale empirical study of over 2400 experiments on 6 discourse datasets from domains including, but not limited to: news, biomedical texts, TED talks, Reddit posts, and fiction. Our results not only motivate our proposal and help us to understand its limitations, but also provide insight on the properties of discourse models and datasets which improve performance in domain adaptation. For instance, we find that non-news datasets are slightly easier to transfer to than news datasets when the training and test sets are very different. Our code and an associated Python package are available to allow practitioners to make more informed model and dataset choices.
End-to-end sign language generation models do not accurately represent the prosody in sign language. A lack of temporal and spatial variations leads to poor-quality generated presentations that confuse human interpreters. In this paper, we aim to improve the prosody in generated sign languages by modeling intensification in a data-driven manner. We present different strategies grounded in linguistics of sign language that inform how intensity modifiers can be represented in gloss annotations. To employ our strategies, we first annotate a subset of the benchmark PHOENIX-14T, a German Sign Language dataset, with different levels of intensification. We then use a supervised intensity tagger to extend the annotated dataset and obtain labels for the remaining portion of it. This enhanced dataset is then used to train state-of-the-art transformer models for sign language generation. We find that our efforts in intensification modeling yield better results when evaluated with automatic metrics. Human evaluation also indicates a higher preference of the videos generated using our model.
Algorithms for text-generation in dialogue can be misguided. For example, in task-oriented settings, reinforcement learning that optimizes only task-success can lead to abysmal lexical diversity. We hypothesize this is due to poor theoretical understanding of the objectives in text-generation and their relation to the learning process (i.e., model training). To this end, we propose a new theoretical framework for learning to generate text in dialogue. Compared to existing theories of learning, our framework allows for analysis of the multi-faceted goals inherent to text-generation. We use our framework to develop theoretical guarantees for learners that adapt to unseen data. As an example, we apply our theory to study data-shift within a cooperative learning algorithm proposed for the GuessWhat?! visual dialogue game. From this insight, we propose a new algorithm, and empirically, we demonstrate our proposal improves both task-success and human-likeness of the generated text. Finally, we show statistics from our theory are empirically predictive of multiple qualities of the generated dialogue, suggesting our theory is useful for model-selection when human evaluations are not available.
Investigating cooperativity of interlocutors is central in studying pragmatics of dialogue. Models of conversation that only assume cooperative agents fail to explain the dynamics of strategic conversations. Thus, we investigate the ability of agents to identify non-cooperative interlocutors while completing a concurrent visual-dialogue task. Within this novel setting, we study the optimality of communication strategies for achieving this multi-task objective. We use the tools of learning theory to develop a theoretical model for identifying non-cooperative interlocutors and apply this theory to analyze different communication strategies. We also introduce a corpus of non-cooperative conversations about images in the GuessWhat?! dataset proposed by De Vries et al. (2017). We use reinforcement learning to implement multiple communication strategies in this context and find that empirical results validate our theory.
Discourse parsing has proven to be useful for a number of NLP tasks that require complex reasoning. However, over a decade since the advent of the Penn Discourse Treebank, predicting implicit discourse relations in text remains challenging. There are several possible reasons for this, and we hypothesize that models should be exposed to more context as it plays an important role in accurate human annotation; meanwhile adding uncertainty measures can improve model accuracy and calibration. To thoroughly investigate this phenomenon, we perform a series of experiments to determine 1) the effects of context on human judgments, and 2) the effect of quantifying uncertainty with annotator confidence ratings on model accuracy and calibration (which we measure using the Brier score (Brier et al, 1950)). We find that including annotator accuracy and confidence improves model accuracy, and incorporating confidence in the model’s temperature function can lead to models with significantly better-calibrated confidence measures. We also find some insightful qualitative results regarding human and model behavior on these datasets.
Using style-transfer models to reduce offensiveness of social media comments can help foster a more inclusive environment. However, there are no sizable datasets that contain offensive texts and their inoffensive counterparts, and fine-tuning pretrained models with limited labeled data can lead to the loss of original meaning in the style-transferred text. To address this issue, we provide two major contributions. First, we release the first publicly-available, parallel corpus of offensive Reddit comments and their style-transferred counterparts annotated by expert sociolinguists. Then, we introduce the first discourse-aware style-transfer models that can effectively reduce offensiveness in Reddit text while preserving the meaning of the original text. These models are the first to examine inferential links between the comment and the text it is replying to when transferring the style of offensive Reddit text. We propose two different methods of integrating discourse relations with pretrained transformer models and evaluate them on our dataset of offensive comments from Reddit and their inoffensive counterparts. Improvements over the baseline with respect to both automatic metrics and human evaluation indicate that our discourse-aware models are better at preserving meaning in style-transferred text when compared to the state-of-the-art discourse-agnostic models.
A personification is a figure of speech that endows inanimate entities with properties and actions typically seen as requiring animacy. In this paper, we explore the task of personification generation. To this end, we propose PINEAPPLE: Personifying INanimate Entities by Acquiring Parallel Personification data for Learning Enhanced generation. We curate a corpus of personifications called PersonifCorp, together with automatically generated de-personified literalizations of these personifications. We demonstrate the usefulness of this parallel corpus by training a seq2seq model to personify a given literal input. Both automatic and human evaluations show that fine-tuning with PersonifCorp leads to significant gains in personification-related qualities such as animacy and interestingness. A detailed qualitative analysis also highlights key strengths and imperfections of PINEAPPLE over baselines, demonstrating a strong ability to generate diverse and creative personifications that enhance the overall appeal of a sentence.
Signed languages are the primary means of communication for many deaf and hard of hearing individuals. Since signed languages exhibit all the fundamental linguistic properties of natural language, we believe that tools and theories of Natural Language Processing (NLP) are crucial towards its modeling. However, existing research in Sign Language Processing (SLP) seldom attempt to explore and leverage the linguistic organization of signed languages. This position paper calls on the NLP community to include signed languages as a research area with high social and scientific impact. We first discuss the linguistic properties of signed languages to consider during their modeling. Then, we review the limitations of current SLP models and identify the open challenges to extend NLP to signed languages. Finally, we urge (1) the adoption of an efficient tokenization method; (2) the development of linguistically-informed models; (3) the collection of real-world signed language data; (4) the inclusion of local signed language communities as an active and leading voice in the direction of research.
Despite the progress made in recent years in addressing natural language understanding (NLU) challenges, the majority of this progress remains to be concentrated on resource-rich languages like English. This work focuses on Persian language, one of the widely spoken languages in the world, and yet there are few NLU datasets available for this language. The availability of high-quality evaluation datasets is a necessity for reliable assessment of the progress on different NLU tasks and domains. We introduce ParsiNLU, the first benchmark in Persian language that includes a range of language understanding tasks—reading comprehension, textual entailment, and so on. These datasets are collected in a multitude of ways, often involving manual annotations by native speakers. This results in over 14.5k new instances across 6 distinct NLU tasks. Additionally, we present the first results on state-of-the-art monolingual and multilingual pre-trained language models on this benchmark and compare them with human performance, which provides valuable insights into our ability to tackle natural language understanding challenges in Persian. We hope ParsiNLU fosters further research and advances in Persian language understanding.1
As Machine Translation (MT) has become increasingly more powerful, accessible, and widespread, the potential for the perpetuation of bias has grown alongside its advances. While overt indicators of bias have been studied in machine translation, we argue that covert biases expose a problem that is further entrenched. Through the use of the gender-neutral language Turkish and the gendered language English, we examine cases of both overt and covert gender bias in MT models. Specifically, we introduce a method to investigate asymmetrical gender markings. We also assess bias in the attribution of personhood and examine occupational and personality stereotypes through overt bias indicators in MT models. Our work explores a deeper layer of bias in MT models and demonstrates the continued need for language-specific, interdisciplinary methodology in MT model development.
Discourse parsers recognize the intentional and inferential relationships that organize extended texts. They have had a great influence on a variety of NLP tasks as well as theoretical studies in linguistics and cognitive science. However it is often difficult to achieve good results from current discourse models, largely due to the difficulty of the task, particularly recognizing implicit discourse relations. Recent developments in transformer-based models have shown great promise on these analyses, but challenges still remain. We present a position paper which provides a systematic analysis of the state of the art discourse parsers. We aim to examine the performance of current discourse parsing models via gradual domain shift: within the corpus, on in-domain texts, and on out-of-domain texts, and discuss the differences between the transformer-based models and the previous models in predicting different types of implicit relations both inter- and intra-sentential. We conclude by describing several shortcomings of the existing models and a discussion of how future work should approach this problem.
Developers of text generation models rely on automated evaluation metrics as a stand-in for slow and expensive manual evaluations. However, image captioning metrics have struggled to give accurate learned estimates of the semantic and pragmatic success of output text. We address this weakness by introducing the first discourse-aware learned generation metric for evaluating image descriptions. Our approach is inspired by computational theories of discourse for capturing information goals using coherence. We present a dataset of image–description pairs annotated with coherence relations. We then train a coherence-aware metric on a subset of the Conceptual Captions dataset and measure its effectiveness—its ability to predict human ratings of output captions—on a test set composed of out-of-domain images. We demonstrate a higher Kendall Correlation Coefficient for our proposed metric with the human judgments for the results of a number of state-of-the-art coherence-aware caption generation models when compared to several other metrics including recently proposed learned metrics such as BLEURT and BERTScore.
Coreference resolution is key to many natural language processing tasks and yet has been relatively unexplored in Sign Language Processing. In signed languages, space is primarily used to establish reference. Solving coreference resolution for signed languages would not only enable higher-level Sign Language Processing systems, but also enhance our understanding of language in different modalities and of situated references, which are key problems in studying grounded language. In this paper, we: (1) introduce Signed Coreference Resolution (SCR), a new challenge for coreference modeling and Sign Language Processing; (2) collect an annotated corpus of German Sign Language with gold labels for coreference together with an annotation software for the task; (3) explore features of hand gesture, iconicity, and spatial situated properties and move forward to propose a set of linguistically informed heuristics and unsupervised models for the task; (4) put forward several proposals about ways to address the complexities of this challenge effectively.
In many domains, dialogue systems need to work collaboratively with users to successfully reconstruct the meaning the user had in mind. In this paper, we show how cognitive models of users’ communicative strategies can be leveraged in a reinforcement learning approach to dialogue planning to enable interactive systems to give targeted, effective feedback about the system’s understanding. We describe a prototype system that collaborates on reference tasks that distinguish arbitrarily varying color patches from similar distractors, and use experiments with crowd workers and analyses of our learned policies to document that our approach leads to context-sensitive clarification strategies that focus on key missing information, elicit correct answers that the system understands, and contribute to increasing dialogue success.
The interpretation of the lexical aspect of verbs in English plays a crucial role in tasks such as recognizing textual entailment and learning discourse-level inferences. We show that two elementary dimensions of aspectual class, states vs. events, and telic vs. atelic events, can be modelled effectively with distributional semantics. We find that a verb’s local context is most indicative of its aspectual class, and we demonstrate that closed class words tend to be stronger discriminating contexts than content words. Our approach outperforms previous work on three datasets. Further, we present a new dataset of human-human conversations annotated with lexical aspects and present experiments that show the correlation of telicity with genre and discourse goals.
We use coherence relations inspired by computational models of discourse to study the information needs and goals of image captioning. Using an annotation protocol specifically devised for capturing image–caption coherence relations, we annotate 10,000 instances from publicly-available image–caption pairs. We introduce a new task for learning inferences in imagery and text, coherence relation prediction, and show that these coherence annotations can be exploited to learn relation classifiers as an intermediary step, and also train coherence-aware, controllable image captioning models. The results show a dramatic improvement in the consistency and quality of the generated captions with respect to information needs specified via coherence relations.
All communication aims at achieving common ground (grounding): interlocutors can work together effectively only with mutual beliefs about what the state of the world is, about what their goals are, and about how they plan to make their goals a reality. Computational dialogue research offers some classic results on grouding, which unfortunately offer scant guidance to the design of grounding modules and behaviors in cutting-edge systems. In this tutorial, we focus on three main topic areas: 1) grounding in human-human communication; 2) grounding in dialogue systems; and 3) grounding in multi-modal interactive systems, including image-oriented conversations and human-robot interactions. We highlight a number of achievements of recent computational research in coordinating complex content, show how these results lead to rich and challenging opportunities for doing grounding in more flexible and powerful ways, and canvass relevant insights from the literature on human–human conversation. We expect that the tutorial will be of interest to researchers in dialogue systems, computational semantics and cognitive modeling, and hope that it will catalyze research and system building that more directly explores the creative, strategic ways conversational agents might be able to seek and offer evidence about their understanding of their interlocutors.
This paper presents a novel crowd-sourced resource for multimodal discourse: our resource characterizes inferences in image-text contexts in the domain of cooking recipes in the form of coherence relations. Like previous corpora annotating discourse structure between text arguments, such as the Penn Discourse Treebank, our new corpus aids in establishing a better understanding of natural communication and common-sense reasoning, while our findings have implications for a wide range of applications, such as understanding and generation of multimodal documents.
We study verbs in image–text corpora, contrasting caption corpora, where texts are explicitly written to characterize image content, with depiction corpora, where texts and images may stand in more general relations. Captions show a distinctively limited distribution of verbs, with strong preferences for specific tense, aspect, lexical aspect, and semantic field. These limitations, which appear in data elicited by a range of methods, restrict the utility of caption corpora to inform image retrieval, multimodal document generation, and perceptually-grounded semantic models. We suggest that these limitations reflect the discourse constraints in play when subjects write texts to accompany imagery, so we argue that future development of image–text corpora should work to increase the diversity of event descriptions, while looking explicitly at the different ways text and imagery can be coherently related.
Arrows are a key ingredient of schematic pictorial communication. This paper investigates the interpretation of arrows through linguistic, crowdsourcing and machine-learning methodology. Our work establishes a novel analogy between arrows and verbs: we advocate representing arrows in terms of qualitatively different structural and semantic frames, and resolving frames to specific interpretations using shallow world knowledge.