To mitigate the potential misuse of large language models (LLMs), recent research has developed watermarking algorithms, which restrict the generation process to leave an invisible trace for watermark detection. Due to the two-stage nature of the task, most studies evaluate the generation and detection separately, thereby presenting a challenge in unbiased, thorough, and applicable evaluations. In this paper, we introduce WaterBench, the first comprehensive benchmark for LLM watermarks, in which we design three crucial factors: (1) For benchmarking procedure, to ensure an apples-to-apples comparison, we first adjust each watermarking method’s hyper-parameter to reach the same watermarking strength, then jointly evaluate their generation and detection performance. (2) For task selection, we diversify the input and output length to form a five-category taxonomy, covering 9 tasks. (3) For evaluation metric, we adopt the GPT4-Judge for automatically evaluating the decline of instruction-following abilities after watermarking. We evaluate 4 open-source watermarks on 2 LLMs under 2 watermarking strengths and observe the common struggles for current methods on maintaining the generation quality. The code and data are available at https://github.com/THU-KEG/WaterBench.
Although large language models (LLMs) demonstrate impressive performance for many language tasks, most of them can only handle texts a few thousand tokens long, limiting their applications on longer sequence inputs, such as books, reports, and codebases. Recent works have proposed methods to improve LLMs’ long context capabilities by extending context windows and more sophisticated memory mechanisms. However, comprehensive benchmarks tailored for evaluating long context understanding are lacking. In this paper, we introduce LongBench, the first bilingual, multi-task benchmark for long context understanding, enabling a more rigorous evaluation of long context understanding. LongBench comprises 21 datasets across 6 task categories in both English and Chinese, with an average length of 6,711 words (English) and 13,386 characters (Chinese). These tasks cover key long-text application areas including single-doc QA, multi-doc QA, summarization, few-shot learning, synthetic tasks, and code completion. All datasets in LongBench are standardized into a unified format, allowing for effortless automatic evaluation of LLMs. Upon comprehensive evaluation of 8 LLMs on LongBench, we find that: (1) Commercial model (GPT-3.5-Turbo-16k) outperforms other open-sourced models, but still struggles on longer contexts. (2) Scaled position embedding and fine-tuning on longer sequences lead to substantial improvement on long context understanding. (3) Context compression technique such as retrieval brings improvement for model with weak ability on long contexts, but the performance still lags behind models that have strong long context understanding capability.
Understanding events in texts is a core objective of natural language understanding, which requires detecting event occurrences, extracting event arguments, and analyzing inter-event relationships. However, due to the annotation challenges brought by task complexity, a large-scale dataset covering the full process of event understanding has long been absent. In this paper, we introduce MAVEN-Arg, which augments MAVEN datasets with event argument annotations, making the first all-in-one dataset supporting event detection, event argument extraction (EAE), and event relation extraction. As an EAE benchmark, MAVEN-Arg offers three main advantages: (1) a comprehensive schema covering 162 event types and 612 argument roles, all with expert-written definitions and examples; (2) a large data scale, containing 98,591 events and 290,613 arguments obtained with laborious human annotation; (3) the exhaustive annotation supporting all task variants of EAE, which annotates both entity and non-entity event arguments in document level. Experiments indicate that MAVEN-Arg is quite challenging for both fine-tuned EAE models and proprietary large language models (LLMs). Furthermore, to demonstrate the benefits of an all-in-one dataset, we preliminarily explore a potential application, future event prediction, with LLMs. MAVEN-Arg and codes can be obtained from https://github.com/THU-KEG/MAVEN-Argument.
This paper proposes PiNose, which trains a probing model on offline self-consistency checking results, thereby circumventing the need for human-annotated data and achieving transferability across diverse data distributions. As the consistency check process is offline, PiNose reduces the computational burden of generating multiple responses by online consistency verification. Additionally, it examines various aspects of internal states prior to response decoding, contributing to more effective detection of factual inaccuracies. Experiment results on both factuality detection and question answering benchmarks show that PiNose achieves surpassing results than existing factuality detection methods.
Program induction (PI) has become a promising paradigm for using knowledge bases (KBs) to help large language models (LLMs) answer complex knowledge-intensive questions. Nonetheless, PI typically relies on a large number of parallel question-program pairs to make the LLM aware of the schema of a given KB, and is thus challenging for many low-resourced KBs that lack annotated data. To this end, we propose KB-Plugin, a plug-and-play framework that enables LLMs to induce programs over any low-resourced KB. Firstly, KB-Plugin adopts self-supervised learning to encode the detailed schema information of a given KB into a pluggable module, namely schema plugin. Secondly, KB-Plugin utilizes abundant annotated data from a rich-resourced KB to train another pluggable module, namely PI plugin, which can help the LLM extract question-relevant schema information from the schema plugin of any KB and utilize the information to induce programs over this KB. Experiments show that KB-Plugin outperforms SoTA low-resourced PI methods with 25x smaller backbone LLM on both large-scale and domain-specific KBs, and even approaches the performance of supervised methods.
Semi-structured interviews are a crucial method of data acquisition in qualitative research. Typically controlled by the interviewer, the process progresses through a question-and-answer format, aimed at eliciting information from the interviewee. However, interviews are highly time-consuming and demand considerable experience of the interviewers, which greatly limits the efficiency and feasibility of data collection. Therefore, we introduce LM-Interview, a novel system designed to automate the process of preparing, conducting and analyzing semi-structured interviews. Experimental results demonstrate that LM-interview achieves performance comparable to that of skilled human interviewers.
Knowledge Base Question Answering (KBQA) aims to answer natural language questions based on facts in knowledge bases. A typical approach to KBQA is semantic parsing, which translates a question into an executable logical form in a formal language. Recent works leverage the capabilities of large language models (LLMs) for logical form generation to improve performance. However, although it is validated that LLMs are capable of solving some KBQA problems, there has been little discussion on the differences in LLMs’ proficiency in formal languages used in semantic parsing. In this work, we propose to evaluate the understanding and generation ability of LLMs to deal with differently structured logical forms by examining the inter-conversion of natural and formal language through in-context learning of LLMs. Extensive experiments with models of different sizes show that state-of-the-art LLMs can understand formal languages as well as humans, but generating correct logical forms given a few examples remains a challenge. Most importantly, our results also indicate that LLMs exhibit considerable sensitivity. In general, the formal language with a lower formalization level, i.e., the more similar it is to natural language, is more friendly to LLMs. Code and data can be found at https://github.com/Matthewlliu/structure_probe.
Event extraction (EE) is a critical task in natural language processing, yet deploying a practical EE system remains challenging. On one hand, powerful large language models (LLMs) currently show poor performance because EE task is more complex than other tasks. On the other hand, state-of-the-art (SOTA) small language models (SLMs) for EE tasks are typically developed through fine-tuning, lack flexibility, and have considerable room for improvement. We propose an approach, **L**LMs-as-**C**orrector for **E**vent **E**xtraction (**LC4EE**), aiming to leverage the superior extraction capability of SLMs and the instruction-following ability of LLMs to construct a robust and highly available EE system. By utilizing LLMs to identify and correct errors of SLMs predictions based on automatically generated feedback information, EE performances can be improved significantly. Experimental results on the representative datasets ACE2005 and MAVEN-Arg for Event Detection (ED) and EE tasks validated the effectiveness of our method.
Event extraction aims to identify events and then extract the arguments involved in those events. In recent years, there has been a gradual shift from sentence-level event extraction to document-level event extraction research. Despite the significant success achieved in English domain event extraction research, event extraction in Chinese still remains largely unexplored. However, a major obstacle to promoting Chinese document-level event extraction is the lack of fine-grained, wide domain coverage datasets for model training and evaluation. In this paper, we propose DocEE-zh, a new Chinese document-level event extraction dataset comprising over 36,000 events and more than 210,000 arguments. DocEE-zh is an extension of the DocEE dataset, utilizing the same event schema, and all data has been meticulously annotated by human experts. We highlight two features: focus on high-interest event types and fine-grained argument types. Experimental results indicate that state-of-the-art models still fail to achieve satisfactory performance, with an F1 score of 45.88% on the event argument extraction task, revealing that Chinese document-level event extraction (DocEE) remains an unresolved challenge. DocEE-zh is now available at https://github.com/tongmeihan1995/DocEE.git.
To advance the evaluation of multimodal math reasoning in large multimodal models (LMMs), this paper introduces a novel benchmark, MM-MATH. MM-MATH consists of 5,929 open-ended middle school math problems with visual contexts, with fine-grained classification across difficulty, grade level, and knowledge points. Unlike existing benchmarks relying on binary answer comparison, MM-MATH incorporates both outcome and process evaluations. Process evaluation employs LMM-as-a-judge to automatically analyze solution steps, identifying and categorizing errors into specific error types. Extensive evaluation of ten models on MM-MATH reveals significant challenges for existing LMMs, highlighting their limited utilization of visual information and struggles with higher-difficulty problems. The best-performing model achieves only 31% accuracy on MM-MATH, compared to 82% for humans. This highlights the challenging nature of our benchmark for existing models and the significant gap between the multimodal reasoning capabilities of current models and humans. Our process evaluation reveals that diagram misinterpretation is the most common error, accounting for more than half of the total error cases, underscoring the need for improved image comprehension in multimodal reasoning.
Extending large language models to effectively handle long contexts requires instruction fine-tuning on input sequences of similar length. To address this, we present LongAlign—a recipe of the instruction data, training, and evaluation for long context alignment. First, we construct a long instruction-following dataset using Self-Instruct. To ensure the data diversity, it covers a broad range of tasks from various long context sources. Second, we adopt the packing and sorted batching strategies to speed up supervised fine-tuning on data with varied length distributions. Additionally, we develop a loss weighting method to balance the contribution to the loss across different sequences during packing training. Third, we introduce the LongBench-Chat benchmark for evaluating instruction-following capabilities on queries of 10k-100k in length. Experiments show that LongAlign outperforms existing recipes for LLMs in long context tasks by up to 30%, while also maintaining their proficiency in handling short, generic tasks.
Event Factuality Detection (EFD) task determines the factuality of textual events, i.e., classifying whether an event is a fact, possibility, or impossibility, which is essential for faithfully understanding and utilizing event knowledge. However, due to the lack of high-quality large-scale data, event factuality detection is under-explored in event understanding research, which limits the development of EFD community. To address these issues and provide faithful event understanding, we introduce MAVEN-FACT, a large-scale and high-quality EFD dataset based on the MAVEN dataset. MAVEN-FACT includes factuality annotations of 112,276 events, making it the largest EFD dataset. Extensive experiments demonstrate that MAVEN-FACT is challenging for both conventional fine-tuned models and large language models (LLMs). Thanks to the comprehensive annotations of event arguments and relations in MAVEN, MAVEN-FACT also supports some further analyses and we find that adopting event arguments and relations helps in event factuality detection for fine-tuned models but does not benefit LLMs. Furthermore, we preliminarily study an application case of event factuality detection and find it helps in mitigating event-related hallucination in LLMs. We will release our dataset and codes to facilitate further research on event factuality detection.
Empowered by the large-scale pretrained language models, existing dialogue systems have demonstrated impressive performance conducting fluent and natural-sounding conversations. However, they are still plagued by the <b>hallucination</b> problem, causing unpredictable factual errors in the generated responses. Recently, knowledge-grounded dialogue generation models, that intentionally invoke external knowledge resources to more informative responses, are also proven to be effective in reducing hallucination. Following the idea of getting high-quality knowledge, a few efforts have achieved pretty good performance on this issue. As some inevitable knowledge noises may also lead to hallucinations, it is emergent to investigate the reason and future directions for building noise-tolerant methods in KGD tasks. In this paper, we analyze the causal story behind this problem with counterfactual reasoning methods. Based on the causal effect analysis, we propose a possible solution for alleviating the hallucination in KGD by exploiting the dialogue-knowledge interaction. Experimental results of our example implementation show that this method can reduce hallucination without disrupting other dialogue performance, while keeping adaptive to different generation models. We hope our efforts can support and call for more attention to developing lightweight techniques towards robust and trusty dialogue systems.
Modern Large Language Models (LLMs) have showcased remarkable prowess in various tasks necessitating sophisticated cognitive behaviors. Nevertheless, a paradoxical performance discrepancy is observed, where these models underperform in seemingly elementary tasks like relation extraction and event extraction due to two issues in conventional evaluation. (1) The imprecision of existing evaluation metrics that struggle to effectively gauge semantic consistency between model outputs and ground truth, and (2) The inherent incompleteness of evaluation benchmarks, primarily due to restrictive human annotation schemas, resulting in underestimated LLM performances. Inspired by the principles in subjective question correction, we propose a new evaluation method, SQC-Score. This method innovatively utilizes LLMs, fine-tuned through subjective question correction data, to refine matching between model outputs and golden labels. Additionally, by incorporating a Natural Language Inference (NLI) model, SQC-Score enriches golden labels, addressing benchmark incompleteness by acknowledging correct yet previously omitted answers. Results on three information extraction tasks show that SQC-Score is more preferred by human annotators than the baseline metrics. Utilizing SQC-Score, we conduct a comprehensive evaluation of the state-of-the-art LLMs and provide insights for future research for information extraction. Dataset and associated codes can be accessed at our <a href=https://github.com/THU-KEG/SQC-Score> GitHub repository </a>.
Event relation extraction (ERE) is a critical and fundamental challenge for natural language processing. Existing work mainly focuses on directly modeling the entire document, which cannot effectively handle long-range dependencies and information redundancy. To address these issues, we propose a cluster-aware compression method for improving event relation extraction (TacoERE), which explores a compression-then-extraction paradigm. Specifically, we first introduce document clustering for modeling event dependencies. It splits the document into intra- and inter-clusters, where intra-clusters aim to enhance the relations within the same cluster, while inter-clusters attempt to model the related events at arbitrary distances. Secondly, we utilize cluster summarization to simplify and highlight important text content of clusters for mitigating information redundancy and event distance. We have conducted extensive experiments on both pre-trained language models, such as RoBERTa, and large language models, such as ChatGPT and GPT-4, on three ERE datasets, i.e., MAVEN-ERE, EventStoryLine and HiEve. Experimental results demonstrate that TacoERE is an effective method for ERE.
Providing knowledge documents for large language models (LLMs) has emerged as a promising solution to update the static knowledge inherent in their parameters. However, knowledge in the document may conflict with the memory of LLMs due to outdated or incorrect knowledge in the LLMs’ parameters. This leads to the necessity of examining the capability of LLMs to assimilate supplemental external knowledge that conflicts with their memory. While previous studies have explained to what extent LLMs extract conflicting knowledge from the provided text, they neglect the necessity to <b>reason</b> with conflicting knowledge. Furthermore, there lack a detailed analysis on strategies to enable LLMs to resolve conflicting knowledge via prompting, decoding strategy, and supervised fine-tuning. To address these limitations, we construct a new dataset, dubbed KNOT, for knowledge conflict resolution examination in the form of question answering. KNOT facilitates in-depth analysis by dividing reasoning with conflicting knowledge into three levels: (1) Direct Extraction, which directly extracts conflicting knowledge to answer questions. (2) Explicit Reasoning, which reasons with conflicting knowledge when the reasoning path is explicitly provided in the question. (3) Implicit Reasoning, where reasoning with conflicting knowledge requires LLMs to infer the reasoning path independently to answer questions. We also conduct extensive experiments on KNOT to establish empirical guidelines for LLMs to utilize conflicting knowledge in complex circumstances. Dataset and associated codes can be accessed at our <a href=https://github.com/THU-KEG/KNOT>GitHub repository</a> .
The generalization problem on KBQA has drawn considerable attention. Existing research suffers from the generalization issue brought by the entanglement in the coarse-grained modeling of the logical expression, or inexecutability issues due to the fine-grained modeling of disconnected classes and relations in real KBs. We propose a Fine-to-Coarse Composition framework for KBQA (FC-KBQA) to both ensure the generalization ability and executability of the logical expression. The main idea of FC-KBQA is to extract relevant fine-grained knowledge components from KB and reformulate them into middle-grained knowledge pairs for generating the final logical expressions. FC-KBQA derives new state-of-the-art performance on GrailQA and WebQSP, and runs 4 times faster than the baseline. Our code is now available at GitHub https://github.com/RUCKBReasoning/FC-KBQA.
With the rapid growth of Massive Open Online Courses (MOOCs), it is expensive and time-consuming to extract high-quality knowledgeable concepts taught in the course by human effort to help learners grasp the essence of the course. In this paper, we propose to automatically extract course concepts using distant supervision to eliminate the heavy work of human annotations, which generates labels by matching them with an easily accessed dictionary. However, this matching process suffers from severe noisy and incomplete annotations because of the limited dictionary and diverse MOOCs. To tackle these challenges, we present a novel three-stage framework DS-MOCE, which leverages the power of pre-trained language models explicitly and implicitly and employs discipline-embedding models with a self-train strategy based on label generation refinement across different domains. We also provide an expert-labeled dataset spanning 20 academic disciplines. Experimental results demonstrate the superiority of DS-MOCE over the state-of-the-art distantly supervised methods (with 7% absolute F1 score improvement). Code and data are now available at https://github.com/THU-KEG/MOOC-NER.
Explainable question answering (XQA) aims to answer a given question and provide an explanation why the answer is selected. Existing XQA methods focus on reasoning on a single knowledge source, e.g., structured knowledge bases, unstructured corpora, etc. However, integrating information from heterogeneous knowledge sources is essential to answer complex questions. In this paper, we propose to leverage question decomposing for heterogeneous knowledge integration, by breaking down a complex question into simpler ones, and selecting the appropriate knowledge source for each sub-question. To facilitate reasoning, we propose a novel two-stage XQA framework, Reasoning over Hierarchical Question Decomposition Tree (RoHT). First, we build the Hierarchical Question Decomposition Tree (HQDT) to understand the semantics of a complex question; then, we conduct probabilistic reasoning over HQDT from root to leaves recursively, to aggregate heterogeneous knowledge at different tree levels and search for a best solution considering the decomposing and answering probabilities. The experiments on complex QA datasets KQA Pro and Musique show that our framework outperforms SOTA methods significantly, demonstrating the effectiveness of leveraging question decomposing for knowledge integration and our RoHT framework.
We present Visual Knowledge oriented Programming platform (VisKoP), a knowledge base question answering (KBQA) system that integrates human into the loop to edit and debug the knowledge base (KB) queries. VisKoP not only provides a neural program induction module, which converts natural language questions into knowledge oriented program language (KoPL), but also maps KoPL programs into graphical elements. KoPL programs can be edited with simple graphical operators, such as ”dragging” to add knowledge operators and ”slot filling” to designate operator arguments. Moreover, VisKoP provides auto-completion for its knowledge base schema and users can easily debug the KoPL program by checking its intermediate results. To facilitate the practical KBQA on a million-entity-level KB, we design a highly efficient KoPL execution engine for the back-end. Experiment results show that VisKoP is highly efficient and user interaction can fix a large portion of wrong KoPL programs to acquire the correct answer. The VisKoP online demo, highly efficient KoPL engine, and screencast video are now publicly available.
The robustness to distribution changes ensures that NLP models can be successfully applied in the realistic world, especially for information extraction tasks. However, most prior evaluation benchmarks have been devoted to validating pairwise matching correctness, ignoring the crucial validation of robustness. In this paper, we present the first benchmark that simulates the evaluation of open information extraction models in the real world, where the syntactic and expressive distributions under the same knowledge meaning may drift variously. We design and annotate a large-scale testbed in which each example is a knowledge-invariant clique that consists of sentences with structured knowledge of the same meaning but with different syntactic and expressive forms. By further elaborating the robustness metric, a model is judged to be robust if its performance is consistently accurate on the overall cliques. We perform experiments on typical models published in the last decade as well as a representative large language model, and the results show that the existing successful models exhibit a frustrating degradation, with a maximum drop of 23.43 F1 score. Our resources and code will be publicly available.
Event understanding aims at understanding the content and relationship of events within texts, which covers multiple complicated information extraction tasks: event detection, event argument extraction, and event relation extraction. To facilitate related research and application, we present an event understanding toolkit OmniEvent, which features three desiderata: (1) Comprehensive. OmniEvent supports mainstream modeling paradigms of all the event understanding tasks and the processing of 15 widely-used English and Chinese datasets. (2) Fair. OmniEvent carefully handles the inconspicuous evaluation pitfalls reported in Peng et al. (2023), which ensures fair comparisons between different models. (3) Easy-to-use. OmniEvent is designed to be easily used by users with varying needs. We provide off-the-shelf models that can be directly deployed as web services. The modular framework also enables users to easily implement and evaluate new event understanding models with OmniEvent. The toolkit is publicly released along with the demonstration website and video.
Event Detection (ED) is a critical task that aims to identify events of certain types in plain text. Neural models have achieved great success on ED, thus coming with a desire for higher interpretability. Existing works mainly exploit words or phrases of the input text to explain models’ inner mechanisms. However, for ED, the event structure, comprising of an event trigger and a set of arguments, are more enlightening clues to explain model behaviors. To this end, we propose a Trigger-Argument based Explanation method (TAE), which can utilize event structure knowledge to uncover a faithful interpretation for the existing ED models at neuron level. Specifically, we design group, sparsity, support mechanisms to construct the event structure from structuralization, compactness, and faithfulness perspectives. We evaluate our model on the large-scale MAVEN and the widely-used ACE 2005 datasets, and observe that TAE is able to reveal the process by which the model predicts. Experimental results also demonstrate that TAE can not only improve the interpretability on standard evaluation metrics, but also effectively facilitate the human understanding.
Event extraction (EE) is a crucial task aiming at extracting events from texts, which includes two subtasks: event detection (ED) and event argument extraction (EAE). In this paper, we check the reliability of EE evaluations and identify three major pitfalls: (1) The data preprocessing discrepancy makes the evaluation results on the same dataset not directly comparable, but the data preprocessing details are not widely noted and specified in papers. (2) The output space discrepancy of different model paradigms makes different-paradigm EE models lack grounds for comparison and also leads to unclear mapping issues between predictions and annotations. (3) The absence of pipeline evaluation of many EAE-only works makes them hard to be directly compared with EE works and may not well reflect the model performance in real-world pipeline scenarios. We demonstrate the significant influence of these pitfalls through comprehensive meta-analyses of recent papers and empirical experiments. To avoid these pitfalls, we suggest a series of remedies, including specifying data preprocessing, standardizing outputs, and providing pipeline evaluation results. To help implement these remedies, we develop a consistent evaluation framework OmniEvent, which can be obtained from https://github.com/THU-KEG/OmniEvent.
Entity linking models have achieved significant success via utilizing pretrained language models to capture semantic features. However, the NIL prediction problem, which aims to identify mentions without a corresponding entity in the knowledge base, has received insufficient attention. We categorize mentions linking to NIL into Missing Entity and Non-Entity Phrase, and propose an entity linking dataset NEL that focuses on the NIL prediction problem.NEL takes ambiguous entities as seeds, collects relevant mention context in the Wikipedia corpus, and ensures the presence of mentions linking to NIL by human annotation and entity masking. We conduct a series of experiments with the widely used bi-encoder and cross-encoder entity linking models, results show that both types of NIL mentions in training data have a significant influence on the accuracy of NIL prediction. Our code and dataset can be accessed at https://github.com/solitaryzero/NIL_EL.
Deep text understanding, which requires the connections between a given document and prior knowledge beyond its text, has been highlighted by many benchmarks in recent years. However, these benchmarks have encountered two major limitations. On the one hand, most of them require human annotation of knowledge, which leads to limited knowledge coverage. On the other hand, they usually use choices or spans in the texts as the answers, which results in narrow answer space. To overcome these limitations, we build a new challenging benchmark named KoRC in this paper. Compared with previous benchmarks, KoRC has two advantages, i.e., broad knowledge coverage and flexible answer format. Specifically, we utilize massive knowledge bases to guide annotators or large language models (LLMs) to construct knowledgable questions. Moreover, we use labels in knowledge bases rather than spans or choices as the final answers. We test state-of-the-art models on KoRC and the experimental results show that the strongest baseline only achieves 68.3% and 30.0% F1 measure in the IID and OOD test set, respectively. These results indicate that deep text understanding is still an unsolved challenge. We will release our dataset and baseline methods upon acceptance.
Large Language Models (LLMs) have not only exhibited exceptional performance across various tasks, but also demonstrated sparks of intelligence. Recent studies have focused on assessing their capabilities on human exams and revealed their impressive competence in different domains. However, cognitive research on the overall knowledge structure of LLMs is still lacking. In this paper, based on educational diagnostic assessment method, we conduct an evaluation using MoocRadar, a meticulously annotated human test dataset based on Bloom Taxonomy. We aim to reveal the knowledge structures of LLMs and gain insights of their cognitive capabilities. This research emphasizes the significance of investigating LLMs’ knowledge and understanding the disparate cognitive patterns of LLMs. By shedding light on models’ knowledge, researchers can advance development and utilization of LLMs in a more informed and effective manner.
Large language models (LLMs) are capable of answering knowledge-intensive complex questions with chain-of-thought (CoT) reasoning. However, they tend to generate factually incorrect reasoning steps when the required knowledge is not available or up-to-date in models’ parameters. Recent works turn to retrieving external knowledge to augment CoT reasoning. Despite being promising, these chain-based methods suffer from: 1) Negative retrieval. Unnecessary or incorrect retrieval may mislead the reasoning; 2) Limited sight. Lacking the ability to look backward or forward, a local error in one step will propagate along the chain. In this paper, we propose a novel approach: Probabilistic Tree-of-thought Reasoning (ProbTree). First, LLMs translate a complex question into a query tree, in which each non-root node denotes a sub-question of its parent node. Then, probabilistic reasoning is conducted over the tree, by solving questions from leaf to root considering the confidence of both question decomposing and answering. During reasoning, for leaf nodes, LLMs choose a more confident answer from Closed-book QA that employs parametric knowledge and Open-book QA that employs retrieved external knowledge, thus eliminating the negative retrieval problem. For non-leaf nodes, with the hierarchical structure, LLMs have broader sights and are able to globally reason with the information from child nodes, thus recovering from local errors. The experiments on three Complex QA datasets under the open-domain setting show that our approach outperforms SOTA methods significantly, demonstrating the effect of probabilistic tree-of-thought reasoning.
Evaluating open-domain dialogue systems is currently an open question. Automatic evaluation metrics have shown poor correlation with human assessment in dialogue generation tasks. Human evaluation, which involves annotators for multi-dimension scoring, is trustworthy but time-consuming. In this work, we propose FFAEval, a reliable and efficient human evaluation framework using Free-For-All ranking approach. By sharing the dialogue history, the framework enables annotators to converse with multiple dialogue systems simultaneously in a single-blind, multi-turn manner. The subsequent free-for-all allows annotators to select the most favourable model in each turn from among all the participating dialogue systems. The final performance of each model is represented by calculating the TrueSkill score derived from the free-for-all competition. Our empirical study on English and Chinese dialogue systems demonstrates that FFAEval achieves a strong correlation with score-based human assessment compared to existing evaluation methods. We further prove the efficiency and stability of our framework in additional experiments. The source code and data are available on Github.
Tuning pre-trained language models (PLMs) with task-specific prompts has been a promising approach for text classification. Particularly, previous studies suggest that prompt-tuning has remarkable superiority in the low-data scenario over the generic fine-tuning methods with extra classifiers. The core idea of prompt-tuning is to insert text pieces, i.e., template, to the input and transform a classification problem into a masked language modeling problem, where a crucial step is to construct a projection, i.e., verbalizer, between a label space and a label word space. A verbalizer is usually handcrafted or searched by gradient descent, which may lack coverage and bring considerable bias and high variances to the results. In this work, we focus on incorporating external knowledge into the verbalizer, forming a knowledgeable prompttuning (KPT), to improve and stabilize prompttuning. Specifically, we expand the label word space of the verbalizer using external knowledge bases (KBs) and refine the expanded label word space with the PLM itself before predicting with the expanded label word space. Extensive experiments on zero and few-shot text classification tasks demonstrate the effectiveness of knowledgeable prompt-tuning.
Complex question answering over knowledge base (Complex KBQA) is challenging because it requires various compositional reasoning capabilities, such as multi-hop inference, attribute comparison, set operation, etc. Existing benchmarks have some shortcomings that limit the development of Complex KBQA: 1) they only provide QA pairs without explicit reasoning processes; 2) questions are poor in diversity or scale. To this end, we introduce KQA Pro, a dataset for Complex KBQA including around 120K diverse natural language questions. We introduce a compositional and interpretable programming language KoPL to represent the reasoning process of complex questions. For each question, we provide the corresponding KoPL program and SPARQL query, so that KQA Pro can serve for both KBQA and semantic parsing tasks. Experimental results show that state-of-the-art KBQA methods cannot achieve promising results on KQA Pro as on current datasets, which suggests that KQA Pro is challenging and Complex KBQA requires further research efforts. We also treat KQA Pro as a diagnostic dataset for testing multiple reasoning skills, conduct a thorough evaluation of existing models and discuss further directions for Complex KBQA. Our codes and datasets can be obtained from https://github.com/shijx12/KQAPro_Baselines.
Program induction for answering complex questions over knowledge bases (KBs) aims to decompose a question into a multi-step program, whose execution against the KB produces the final answer. Learning to induce programs relies on a large number of parallel question-program pairs for the given KB. However, for most KBs, the gold program annotations are usually lacking, making learning difficult. In this paper, we propose the approach of program transfer, which aims to leverage the valuable program annotations on the rich-resourced KBs as external supervision signals to aid program induction for the low-resourced KBs that lack program annotations. For program transfer, we design a novel two-stage parsing framework with an efficient ontology-guided pruning strategy. First, a sketch parser translates the question into a high-level program sketch, which is the composition of functions. Second, given the question and sketch, an argument parser searches the detailed arguments from the KB for functions. During the searching, we incorporate the KB ontology to prune the search space. The experiments on ComplexWebQuestions and WebQuestionSP show that our method outperforms SOTA methods significantly, demonstrating the effectiveness of program transfer and our framework. Our codes and datasets can be obtained from https://github.com/THU-KEG/ProgramTransfer.
We investigate the usage of entity linking (EL)in downstream tasks and present the first modularized EL toolkit for easy task adaptation. Different from the existing EL methods that dealwith all the features simultaneously, we modularize the whole model into separate parts witheach feature. This decoupled design enablesflexibly adding new features without retraining the whole model as well as flow visualization with better interpretability of the ELresult. We release the corresponding toolkit,HOSMEL, for Chinese, with three flexible usage modes, a live demo, and a demonstrationvideo. Experiments on two benchmarks forthe question answering task demonstrate thatHOSMEL achieves much less time and spaceconsumption as well as significantly better accuracy performance compared with existingSOTA EL methods. We hope the release ofHOSMEL will call for more attention to studyEL for downstream tasks in non-English languages.
Multi-Document Summarization (MDS) commonly employs the 2-stage extract-then-abstract paradigm, which first extracts a relatively short meta-document, then feeds it into the deep neural networks to generate an abstract. Previous work usually takes the ROUGE score as the label for training a scoring model to evaluate source documents. However, the trained scoring model is prone to under-fitting for low-resource settings, as it relies on the training data. To extract documents effectively, we construct prompting templates that invoke the underlying knowledge in Pre-trained Language Model (PLM) to calculate the document and keyword’s perplexity, which can assess the document’s semantic salience. Our unsupervised approach can be applied as a plug-in to boost other metrics for evaluating a document’s salience, thus improving the subsequent abstract generation. We get positive results on 2 MDS datasets, 2 data settings, and 2 abstractive backbone models, showing our method’s effectiveness. Our code is available at https://github.com/THU-KEG/UPER
The diverse relationships among real-world events, including coreference, temporal, causal, and subevent relations, are fundamental to understanding natural languages. However, two drawbacks of existing datasets limit event relation extraction (ERE) tasks: (1) Small scale. Due to the annotation complexity, the data scale of existing datasets is limited, which cannot well train and evaluate data-hungry models. (2) Absence of unified annotation. Different types of event relations naturally interact with each other, but existing datasets only cover limited relation types at once, which prevents models from taking full advantage of relation interactions. To address these issues, we construct a unified large-scale human-annotated ERE dataset MAVEN-ERE with improved annotation schemes. It contains 103,193 event coreference chains, 1,216,217 temporal relations, 57,992 causal relations, and 15,841 subevent relations, which is larger than existing datasets of all the ERE tasks by at least an order of magnitude. Experiments show that ERE on MAVEN-ERE is quite challenging, and considering relation interactions with joint learning can improve performances. The dataset and source codes can be obtained from https://github.com/THU-KEG/MAVEN-ERE.
Multi-hop knowledge graph (KG) reasoning has been widely studied in recent years to provide interpretable predictions on missing links with evidential paths. Most previous works use reinforcement learning (RL) based methods that learn to navigate the path towards the target entity. However, these methods suffer from slow and poor convergence, and they may fail to infer a certain path when there is a missing edge along the path. Here we present SQUIRE, the first Sequence-to-sequence based multi-hop reasoning framework, which utilizes an encoder-decoder Transformer structure to translate the query to a path. Our framework brings about two benefits: (1) It can learn and predict in an end-to-end fashion, which gives better and faster convergence; (2) Our transformer model does not rely on existing edges to generate the path, and has the flexibility to complete missing edges along the path, especially in sparse KGs. Experiments on standard and sparse KGs show that our approach yields significant improvement over prior methods, while converging 4x-7x faster.
Conceptual knowledge is fundamental to human cognition and knowledge bases. However, existing knowledge probing works only focus on evaluating factual knowledge of pre-trained language models (PLMs) and ignore conceptual knowledge. Since conceptual knowledge often appears as implicit commonsense behind texts, designing probes for conceptual knowledge is hard. Inspired by knowledge representation schemata, we comprehensively evaluate conceptual knowledge of PLMs by designing three tasks to probe whether PLMs organize entities by conceptual similarities, learn conceptual properties, and conceptualize entities in contexts, respectively. For the tasks, we collect and annotate 24k data instances covering 393 concepts, which is COPEN, a COnceptual knowledge Probing bENchmark. Extensive experiments on different sizes and types of PLMs show that existing PLMs systematically lack conceptual knowledge and suffer from various spurious correlations. We believe this is a critical bottleneck for realizing human-like cognition in PLMs. COPEN and our codes are publicly released at https://github.com/THU-KEG/COPEN.
Subject to the huge semantic gap between natural and formal languages, neural semantic parsing is typically bottlenecked by its complexity of dealing with both input semantics and output syntax. Recent works have proposed several forms of supplementary supervision but none is generalized across multiple formal languages. This paper proposes a unified intermediate representation for graph query languages, named GraphQ IR. It has a natural-language-like expression that bridges the semantic gap and formally defined syntax that maintains the graph structure. Therefore, a neural semantic parser can more precisely convert user queries into GraphQ IR, which can be later losslessly compiled into various downstream graph query languages. Extensive experiments on several benchmarks including KQA Pro, Overnight, GrailQA, and MetaQA-Cypher under the standard i.i.d., out-of-distribution, and low-resource settings validate GraphQ IR’s superiority over the previous state-of-the-arts with a maximum 11% accuracy improvement.
Transformer-based pre-trained language models have demonstrated superior performance on various natural language processing tasks. However, it remains unclear how the skills required to handle these tasks distribute among model parameters. In this paper, we find that after prompt tuning for specific tasks, the activations of some neurons within pre-trained Transformers are highly predictive of the task labels. We dub these neurons skill neurons and confirm they encode task-specific skills by finding that: (1) Skill neurons are crucial for handling tasks. Performances of pre-trained Transformers on a task significantly drop when corresponding skill neurons are perturbed. (2) Skill neurons are task-specific. Similar tasks tend to have similar distributions of skill neurons. Furthermore, we demonstrate the skill neurons are most likely generated in pre-training rather than fine-tuning by showing that the skill neurons found with prompt tuning are also crucial for other fine-tuning methods freezing neuron weights, such as the adapter-based tuning and BitFit. We also explore the applications of skill neurons, including accelerating Transformers with network pruning and building better transferability indicators. These findings may promote further research on understanding Transformers. The source code can be obtained from https://github.com/THU-KEG/Skill-Neuron.
Recognizing facts is the most fundamental step in making judgments, hence detecting events in the legal documents is important to legal case analysis tasks. However, existing Legal Event Detection (LED) datasets only concern incomprehensive event types and have limited annotated data, which restricts the development of LED methods and their downstream applications. To alleviate these issues, we present LEVEN a large-scale Chinese LEgal eVENt detection dataset, with 8,116 legal documents and 150,977 human-annotated event mentions in 108 event types. Not only charge-related events, LEVEN also covers general events, which are critical for legal case understanding but neglected in existing LED datasets. To our knowledge, LEVEN is the largest LED dataset and has dozens of times the data scale of others, which shall significantly promote the training and evaluation of LED methods. The results of extensive experiments indicate that LED is challenging and needs further effort. Moreover, we simply utilize legal events as side information to promote downstream applications. The method achieves improvements of average 2.2 points precision in low-resource judgment prediction, and 1.5 points mean average precision in unsupervised case retrieval, which suggests the fundamentality of LED. The source code and dataset can be obtained from https://github.com/thunlp/LEVEN.
Cross-lingual Entity Typing (CLET) aims at improving the quality of entity type prediction by transferring semantic knowledge learned from rich-resourced languages to low-resourced languages. In this paper, by utilizing multilingual transfer learning via the mixture-of-experts approach, our model dynamically capture the relationship between target language and each source language, and effectively generalize to predict types of unseen entities in new languages. Extensive experiments on multi-lingual datasets show that our method significantly outperforms multiple baselines and can robustly handle negative transfer. We questioned the relationship between language similarity and the performance of CLET. A series of experiments refute the commonsense that the more source the better, and suggest the Similarity Hypothesis for CLET.
In recent years, pre-trained language models (PLMs) have been shown to capture factual knowledge from massive texts, which encourages the proposal of PLM-based knowledge graph completion (KGC) models. However, these models are still quite behind the SOTA KGC models in terms of performance. In this work, we find two main reasons for the weak performance: (1) Inaccurate evaluation setting. The evaluation setting under the closed-world assumption (CWA) may underestimate the PLM-based KGC models since they introduce more external knowledge; (2) Inappropriate utilization of PLMs. Most PLM-based KGC models simply splice the labels of entities and relations as inputs, leading to incoherent sentences that do not take full advantage of the implicit knowledge in PLMs. To alleviate these problems, we highlight a more accurate evaluation setting under the open-world assumption (OWA), which manual checks the correctness of knowledge that is not in KGs. Moreover, motivated by prompt tuning, we propose a novel PLM-based KGC model named PKGC. The basic idea is to convert each triple and its support information into natural prompt sentences, which is further fed into PLMs for classification. Experiment results on two KGC datasets demonstrate OWA is more reliable for evaluating KGC, especially on the link prediction, and the effectiveness of our PKCG model on both CWA and OWA settings.
The recent rise of conversational applications such as online customer service systems and intelligent personal assistants has promoted the development of conversational knowledge base question answering (ConvKBQA). Different from the traditional single-turn KBQA, ConvKBQA usually explores multi-turn questions around a topic, where ellipsis and coreference pose great challenges to the single-turn KBQA systems which require self-contained questions. In this paper, we propose a rewrite-and-reason framework to first produce a full-fledged rewritten question based on the conversation history and then reason the answer by existing single-turn KBQA models. To overcome the absence of the rewritten supervision signals, we introduce a knowledge-augmented self-training mechanism to transfer the question rewriter from another dataset to adapt to the current knowledge base. Our question rewriter is decoupled from the subsequent QA process, which makes it easy to be united with either retrieval-based or semantic parsing-based KBQA models. Experiment results demonstrate the effectiveness of our method and a new state-of-the-art result is achieved. The code and dataset are available online now.
Paraphrase generation reflects the ability to understand the meaning from the language surface form and rephrase it to other expressions. Recent paraphrase generation works have paid attention to unsupervised approaches based on Pre-trained Language Models (PLMs) to avoid heavy reliance on parallel data by utilizing PLMs’ generation ability. However, the generated pairs of existing unsupervised methods are usually weak either in semantic equivalence or expression diversity. In this paper, we present a novel unsupervised paraphrase generation framework called Paraphrase Machine. By employing multi-aspect equivalence constraints and multi-granularity diversifying mechanisms, Paraphrase Machine is able to achieve good semantic equivalence and expressive diversity, producing a high-quality unsupervised paraphrase dataset. Based on this dataset, we train a general paraphrase model, which can be directly applied to rewrite the input sentence of various domains without any fine-tuning, and achieves substantial gains of 9.1% and 3.3% absolutely in BLEU score over previous SOTA on Quora and MSCOCO. By further fine-tuning our model with domain-specific training sets, the improvement can be increased to even 18.0% and 4.6%. Most importantly, by applying it to language understanding and generation tasks under the low-resource setting, we demonstrate that our model can serve as a universal data augmentor to boost the few-shot performance (e.g., average 2.0% gain on GLUE).
Open Information Extraction models have shown promising results with sufficient supervision. However, these models face a fundamental challenge that the syntactic distribution of training data is partially observable in comparison to the real world. In this paper, we propose a syntactically robust training framework that enables models to be trained on a syntactic-abundant distribution based on diverse paraphrase generation. To tackle the intrinsic problem of knowledge deformation of paraphrasing, two algorithms based on semantic similarity matching and syntactic tree walking are used to restore the expressionally transformed knowledge. The training framework can be generally applied to other syntactic partial observable domains. Based on the proposed framework, we build a new evaluation set called CaRB-AutoPara, a syntactically diverse dataset consistent with the real-world setting for validating the robustness of the models. Experiments including a thorough analysis show that the performance of the model degrades with the increase of the difference in syntactic distribution, while our framework gives a robust boundary.
As an effective approach to adapting pre-trained language models (PLMs) for specific tasks, prompt-learning has recently attracted much attention from researchers. By using cloze-style language prompts to stimulate the versatile knowledge of PLMs, prompt-learning can achieve promising results on a series of NLP tasks, such as natural language inference, sentiment classification, and knowledge probing. In this work, we investigate the application of prompt-learning on fine-grained entity typing in fully supervised, few-shot, and zero-shot scenarios. We first develop a simple and effective prompt-learning pipeline by constructing entity-oriented verbalizers and templates and conducting masked language modeling. Further, to tackle the zero-shot regime, we propose a self-supervised strategy that carries out distribution-level optimization in prompt-learning to automatically summarize the information of entity types. Extensive experiments on four fine-grained entity typing benchmarks under fully supervised, few-shot, and zero-shot settings show the effectiveness of the prompt-learning paradigm and further make a powerful alternative to vanilla fine-tuning.
Dependency parsing aims to extract syntactic dependency structure or semantic dependency structure for sentences.Existing methods for dependency parsing include transition-based method, graph-based method and sequence-to-sequence method.These methods obtain excellent performance and we notice them belong to labeling method.Therefore, it may be very valuable and interesting to explore the possibility of using generative method to implement dependency parsing.In this paper, we propose to achieve Dependency Parsing (DP) via Sequence Generation (SG) by utilizing only the pre-trained language model without any auxiliary structures.We first explore different serialization designing strategies for converting parsing structures into sequences.Then we design dependency units and concatenate these units into the sequence for DPSG.We verify the DPSG is capable of parsing on widely used DP benchmarks, i.e., PTB, UD2.2, SDP15 and SemEval16.In addition, we also investigate the astonishing low-resource applicability of DPSG, which includes unsupervised cross-domain conducted on CODT and few-shot cross-task conducted on SDP15.Our research demonstrates that sequence generation is one of the effective methods to achieve dependency parsing.Our codes are available now.
Prompt tuning (PT) is a promising parameter-efficient method to utilize extremely large pre-trained language models (PLMs), which can achieve comparable performance to full-parameter fine-tuning by only tuning a few soft prompts. However, PT requires much more training time than fine-tuning. Intuitively, knowledge transfer can help to improve the efficiency. To explore whether we can improve PT via prompt transfer, we empirically investigate the transferability of soft prompts across different downstream tasks and PLMs in this work. We find that (1) in zero-shot setting, trained soft prompts can effectively transfer to similar tasks on the same PLM and also to other PLMs with a cross-model projector trained on similar tasks; (2) when used as initialization, trained soft prompts of similar tasks and projected prompts of other PLMs can significantly accelerate training and also improve the performance of PT. Moreover, to explore what decides prompt transferability, we investigate various transferability indicators and find that the overlapping rate of activated neurons strongly reflects the transferability, which suggests how the prompts stimulate PLMs is essential. Our findings show that prompt transfer is promising for improving PT, and further research shall focus more on prompts’ stimulation to PLMs. The source code can be obtained from https://github.com/thunlp/Prompt-Transferability.
Event extraction aims to identify an event and then extract the arguments participating in the event. Despite the great success in sentence-level event extraction, events are more naturally presented in the form of documents, with event arguments scattered in multiple sentences. However, a major barrier to promote document-level event extraction has been the lack of large-scale and practical training and evaluation datasets. In this paper, we present DocEE, a new document-level event extraction dataset including 27,000+ events, 180,000+ arguments. We highlight three features: large-scale manual annotations, fine-grained argument types and application-oriented settings. Experiments show that there is still a big gap between state-of-the-art models and human beings (41% Vs 85% in F1 score), indicating that DocEE is an open issue. DocEE is now available at https://github.com/tongmeihan1995/DocEE.git.
Recently, there have merged a class of taskoriented dialogue (TOD) datasets collected through Wizard-of-Oz simulated games. However, the Wizard-of-Oz data are in fact simulated data and thus are fundamentally different from real-life conversations, which are more noisy and casual. Recently, the SereTOD challenge is organized and releases the MobileCS dataset, which consists of real-world dialog transcripts between real users and customerservice staffs from China Mobile. Based on the MobileCS dataset, the SereTOD challenge has two tasks, not only evaluating the construction of the dialogue system itself, but also examining information extraction from dialog transcripts, which is crucial for building the knowledge base for TOD. This paper mainly presents a baseline study of the two tasks with the MobileCS dataset. We introduce how the two baselines are constructed, the problems encountered, and the results. We anticipate that the baselines can facilitate exciting future research to build human-robot dialogue systems for real-life tasks.
Entity Matching (EM) aims at recognizing entity records that denote the same real-world object. Neural EM models learn vector representation of entity descriptions and match entities end-to-end. Though robust, these methods require many annotated resources for training, and lack of interpretability. In this paper, we propose a novel EM framework that consists of Heterogeneous Information Fusion (HIF) and Key Attribute Tree (KAT) Induction to decouple feature representation from matching decision. Using self-supervised learning and mask mechanism in pre-trained language modeling, HIF learns the embeddings of noisy attribute values by inter-attribute attention with unlabeled data. Using a set of comparison features and a limited amount of annotated data, KAT Induction learns an efficient decision tree that can be interpreted by generating entity matching rules whose structure is advocated by domain experts. Experiments on 6 public datasets and 3 industrial datasets show that our method is highly efficient and outperforms SOTA EM models in most cases. We will release the codes upon acceptance.
Wikipedia abstract generation aims to distill a Wikipedia abstract from web sources and has met significant success by adopting multi-document summarization techniques. However, previous works generally view the abstract as plain text, ignoring the fact that it is a description of a certain entity and can be decomposed into different topics. In this paper, we propose a two-stage model TWAG that guides the abstract generation with topical information. First, we detect the topic of each input paragraph with a classifier trained on existing Wikipedia articles to divide input documents into different topics. Then, we predict the topic distribution of each abstract sentence, and decode the sentence from topic-aware representations with a Pointer-Generator network. We evaluate our model on the WikiCatSum dataset, and the results show that TWAG outperforms various existing baselines and is capable of generating comprehensive abstracts.
Few-shot Named Entity Recognition (NER) exploits only a handful of annotations to iden- tify and classify named entity mentions. Pro- totypical network shows superior performance on few-shot NER. However, existing prototyp- ical methods fail to differentiate rich seman- tics in other-class words, which will aggravate overfitting under few shot scenario. To address the issue, we propose a novel model, Mining Undefined Classes from Other-class (MUCO), that can automatically induce different unde- fined classes from the other class to improve few-shot NER. With these extra-labeled unde- fined classes, our method will improve the dis- criminative ability of NER classifier and en- hance the understanding of predefined classes with stand-by semantic knowledge. Experi- mental results demonstrate that our model out- performs five state-of-the-art models in both 1- shot and 5-shots settings on four NER bench- marks. We will release the code upon accep- tance. The source code is released on https: //github.com/shuaiwa16/OtherClassNER.git.
Event extraction (EE) has considerably benefited from pre-trained language models (PLMs) by fine-tuning. However, existing pre-training methods have not involved modeling event characteristics, resulting in the developed EE models cannot take full advantage of large-scale unsupervised data. To this end, we propose CLEVE, a contrastive pre-training framework for EE to better learn event knowledge from large unsupervised data and their semantic structures (e.g. AMR) obtained with automatic parsers. CLEVE contains a text encoder to learn event semantics and a graph encoder to learn event structures respectively. Specifically, the text encoder learns event semantic representations by self-supervised contrastive learning to represent the words of the same events closer than those unrelated words; the graph encoder learns event structure representations by graph contrastive pre-training on parsed event-related semantic structures. The two complementary representations then work together to improve both the conventional supervised EE and the unsupervised “liberal” EE, which requires jointly extracting events and discovering event schemata without any annotated data. Experiments on ACE 2005 and MAVEN datasets show that CLEVE achieves significant improvements, especially in the challenging unsupervised setting. The source code and pre-trained checkpoints can be obtained from https://github.com/THU-KEG/CLEVE.
We present InferWiki, a Knowledge Graph Completion (KGC) dataset that improves upon existing benchmarks in inferential ability, assumptions, and patterns. First, each testing sample is predictable with supportive data in the training set. To ensure it, we propose to utilize rule-guided train/test generation, instead of conventional random split. Second, InferWiki initiates the evaluation following the open-world assumption and improves the inferential difficulty of the closed-world assumption, by providing manually annotated negative and unknown triples. Third, we include various inference patterns (e.g., reasoning path length and types) for comprehensive evaluation. In experiments, we curate two settings of InferWiki varying in sizes and structures, and apply the construction process on CoDEx as comparative datasets. The results and empirical analyses demonstrate the necessity and high-quality of InferWiki. Nevertheless, the performance gap among various inferential assumptions and patterns presents the difficulty and inspires future research direction. Our datasets can be found in https://github.com/TaoMiner/inferwiki.
Multi-hop Question Answering (QA) is a challenging task because it requires precise reasoning with entity relations at every step towards the answer. The relations can be represented in terms of labels in knowledge graph (e.g., spouse) or text in text corpus (e.g., they have been married for 26 years). Existing models usually infer the answer by predicting the sequential relation path or aggregating the hidden graph features. The former is hard to optimize, and the latter lacks interpretability. In this paper, we propose TransferNet, an effective and transparent model for multi-hop QA, which supports both label and text relations in a unified framework. TransferNet jumps across entities at multiple steps. At each step, it attends to different parts of the question, computes activated scores for relations, and then transfer the previous entity scores along activated relations in a differentiable way. We carry out extensive experiments on three datasets and demonstrate that TransferNet surpasses the state-of-the-art models by a large margin. In particular, on MetaQA, it achieves 100% accuracy in 2-hop and 3-hop questions. By qualitative analysis, we show that TransferNet has transparent and interpretable intermediate results.
Multi-hop reasoning has been widely studied in recent years to obtain more interpretable link prediction. However, we find in experiments that many paths given by these models are actually unreasonable, while little work has been done on interpretability evaluation for them. In this paper, we propose a unified framework to quantitatively evaluate the interpretability of multi-hop reasoning models so as to advance their development. In specific, we define three metrics, including path recall, local interpretability, and global interpretability for evaluation, and design an approximate strategy to calculate these metrics using the interpretability scores of rules. We manually annotate all possible rules and establish a benchmark. In experiments, we verify the effectiveness of our benchmark. Besides, we run nine representative baselines on our benchmark, and the experimental results show that the interpretability of current multi-hop reasoning models is less satisfactory and is 51.7% lower than the upper bound given by our benchmark. Moreover, the rule-based models outperform the multi-hop reasoning models in terms of performance and interpretability, which points to a direction for future research, i.e., how to better incorporate rule information into the multi-hop reasoning model. We will publish our codes and datasets upon acceptance.
Pre-trained language representation models (PLMs) cannot well capture factual knowledge from text. In contrast, knowledge embedding (KE) methods can effectively represent the relational facts in knowledge graphs (KGs) with informative entity embeddings, but conventional KE models cannot take full advantage of the abundant textual information. In this paper, we propose a unified model for Knowledge Embedding and Pre-trained LanguagERepresentation (KEPLER), which can not only better integrate factual knowledge into PLMs but also produce effective text-enhanced KE with the strong PLMs. In KEPLER, we encode textual entity descriptions with a PLM as their embeddings, and then jointly optimize the KE and language modeling objectives. Experimental results show that KEPLER achieves state-of-the-art performances on various NLP tasks, and also works remarkably well as an inductive KE model on KG link prediction. Furthermore, for pre-training and evaluating KEPLER, we construct Wikidata5M1 , a large-scale KG dataset with aligned entity descriptions, and benchmark state-of-the-art KE methods on it. It shall serve as a new KE benchmark and facilitate the research on large KG, inductive KE, and KG with text. The source code can be obtained from https://github.com/THU-KEG/KEPLER.
Event Argument Extraction (EAE) aims at predicting event argument roles of entities in text, which is a crucial subtask and bottleneck of event extraction. Existing EAE methods either extract each event argument roles independently or sequentially, which cannot adequately model the joint probability distribution among event arguments and their roles. In this paper, we propose a Bayesian model named Neural Gibbs Sampling (NGS) to jointly extract event arguments. Specifically, we train two neural networks to model the prior distribution and conditional distribution over event arguments respectively and then use Gibbs sampling to approximate the joint distribution with the learned distributions. For overcoming the shortcoming of the high complexity of the original Gibbs sampling algorithm, we further apply simulated annealing to efficiently estimate the joint probability distribution over event arguments and make predictions. We conduct experiments on the two widely-used benchmark datasets ACE 2005 and TAC KBP 2016. The Experimental results show that our NGS model can achieve comparable results to existing state-of-the-art EAE methods. The source code can be obtained from https://github.com/THU-KEG/NGS.
Within the prosperity of Massive Open Online Courses (MOOCs), the education applications that automatically provide extracurricular knowledge for MOOC users become rising research topics. However, MOOC courses’ diversity and rapid updates make it more challenging to find suitable new knowledge for students. In this paper, we present ExpanRL, an end-to-end hierarchical reinforcement learning (HRL) model for concept expansion in MOOCs. Employing a two-level HRL mechanism of seed selection and concept expansion, ExpanRL is more feasible to adjust the expansion strategy to find new concepts based on the students’ feedback on expansion results. Our experiments on nine novel datasets from real MOOCs show that ExpanRL achieves significant improvements over existing methods and maintain competitive performance under different settings.
The prosperity of Massive Open Online Courses (MOOCs) provides fodder for many NLP and AI research for education applications, e.g., course concept extraction, prerequisite relation discovery, etc. However, the publicly available datasets of MOOC are limited in size with few types of data, which hinders advanced models and novel attempts in related topics. Therefore, we present MOOCCube, a large-scale data repository of over 700 MOOC courses, 100k concepts, 8 million student behaviors with an external resource. Moreover, we conduct a prerequisite discovery task as an example application to show the potential of MOOCCube in facilitating relevant research. The data repository is now available at http://moocdata.cn/data/MOOCCube.
Event Detection (ED) is a fundamental task in automatically structuring texts. Due to the small scale of training data, previous methods perform poorly on unseen/sparsely labeled trigger words and are prone to overfitting densely labeled trigger words. To address the issue, we propose a novel Enrichment Knowledge Distillation (EKD) model to leverage external open-domain trigger knowledge to reduce the in-built biases to frequent trigger words in annotations. Experiments on benchmark ACE2005 show that our model outperforms nine strong baselines, is especially effective for unseen/sparsely labeled trigger words. The source code is released on https://github.com/shuaiwa16/ekd.git.
Event detection (ED), which means identifying event trigger words and classifying event types, is the first and most fundamental step for extracting event knowledge from plain text. Most existing datasets exhibit the following issues that limit further development of ED: (1) Data scarcity. Existing small-scale datasets are not sufficient for training and stably benchmarking increasingly sophisticated modern neural methods. (2) Low coverage. Limited event types of existing datasets cannot well cover general-domain events, which restricts the applications of ED models. To alleviate these problems, we present a MAssive eVENt detection dataset (MAVEN), which contains 4,480 Wikipedia documents, 118,732 event mention instances, and 168 event types. MAVEN alleviates the data scarcity problem and covers much more general event types. We reproduce the recent state-of-the-art ED models and conduct a thorough evaluation on MAVEN. The experimental results show that existing ED methods cannot achieve promising results on MAVEN as on the small datasets, which suggests that ED in the real world remains a challenging task and requires further research efforts. We also discuss further directions for general domain ED with empirical analyses. The source code and dataset can be obtained from https://github.com/THU-KEG/MAVEN-dataset.
Multi-hop reasoning has been widely studied in recent years to seek an effective and interpretable method for knowledge graph (KG) completion. Most previous reasoning methods are designed for dense KGs with enough paths between entities, but cannot work well on those sparse KGs that only contain sparse paths for reasoning. On the one hand, sparse KGs contain less information, which makes it difficult for the model to choose correct paths. On the other hand, the lack of evidential paths to target entities also makes the reasoning process difficult. To solve these problems, we propose a multi-hop reasoning model over sparse KGs, by applying novel dynamic anticipation and completion strategies: (1) The anticipation strategy utilizes the latent prediction of embedding-based models to make our model perform more potential path search over sparse KGs. (2) Based on the anticipation information, the completion strategy dynamically adds edges as additional actions during the path search, which further alleviates the sparseness problem of KGs. The experimental results on five datasets sampled from Freebase, NELL and Wikidata show that our method outperforms state-of-the-art baselines. Our codes and datasets can be obtained from https://github.com/THU-KEG/DacKGR.
Entity alignment (EA) aims at building a unified Knowledge Graph (KG) of rich content by linking the equivalent entities from various KGs. GNN-based EA methods present promising performance by modeling the KG structure defined by relation triples. However, attribute triples can also provide crucial alignment signal but have not been well explored yet. In this paper, we propose to utilize an attributed value encoder and partition the KG into subgraphs to model the various types of attribute triples efficiently. Besides, the performances of current EA methods are overestimated because of the name-bias of existing EA datasets. To make an objective evaluation, we propose a hard experimental setting where we select equivalent entity pairs with very different names as the test set. Under both the regular and hard settings, our method achieves significant improvements (5.10% on average Hits@1 in DBP15k) over 12 baselines in cross-lingual and monolingual datasets. Ablation studies on different subgraphs and a case study about attribute types further demonstrate the effectiveness of our method. Source code and data can be found at https://github.com/thunlp/explore-and-evaluate.
Entity alignment aims at integrating complementary knowledge graphs (KGs) from different sources or languages, which may benefit many knowledge-driven applications. It is challenging due to the heterogeneity of KGs and limited seed alignments. In this paper, we propose a semi-supervised entity alignment method by joint Knowledge Embedding model and Cross-Graph model (KECG). It can make better use of seed alignments to propagate over the entire graphs with KG-based constraints. Specifically, as for the knowledge embedding model, we utilize TransE to implicitly complete two KGs towards consistency and learn relational constraints between entities. As for the cross-graph model, we extend Graph Attention Network (GAT) with projection constraint to robustly encode graphs, and two KGs share the same GAT to transfer structural knowledge as well as to ignore unimportant neighbors for alignment via attention mechanism. Results on publicly available datasets as well as further analysis demonstrate the effectiveness of KECG. Our codes can be found in https: //github.com/THU-KEG/KECG.
Multi-hop knowledge graph (KG) reasoning is an effective and explainable method for predicting the target entity via reasoning paths in query answering (QA) task. Most previous methods assume that every relation in KGs has enough triples for training, regardless of those few-shot relations which cannot provide sufficient triples for training robust reasoning models. In fact, the performance of existing multi-hop reasoning methods drops significantly on few-shot relations. In this paper, we propose a meta-based multi-hop reasoning method (Meta-KGR), which adopts meta-learning to learn effective meta parameters from high-frequency relations that could quickly adapt to few-shot relations. We evaluate Meta-KGR on two public datasets sampled from Freebase and NELL, and the experimental results show that Meta-KGR outperforms state-of-the-art methods in few-shot scenarios. In the future, our codes and datasets will also be available to provide more details.
This paper addresses the problem of inferring the fine-grained type of an entity from a knowledge base. We convert this problem into the task of graph-based semi-supervised classification, and propose Hierarchical Multi Graph Convolutional Network (HMGCN), a novel Deep Learning architecture to tackle this problem. We construct three kinds of connectivity matrices to capture different kinds of semantic correlations between entities. A recursive regularization is proposed to model the subClassOf relations between types in given type hierarchy. Extensive experiments with two large-scale public datasets show that our proposed method significantly outperforms four state-of-the-art methods.
Existing event extraction methods classify each argument role independently, ignoring the conceptual correlations between different argument roles. In this paper, we propose a Hierarchical Modular Event Argument Extraction (HMEAE) model, to provide effective inductive bias from the concept hierarchy of event argument roles. Specifically, we design a neural module network for each basic unit of the concept hierarchy, and then hierarchically compose relevant unit modules with logical operations into a role-oriented modular network to classify a specific argument role. As many argument roles share the same high-level unit module, their correlation can be utilized to extract specific event arguments better. Experiments on real-world datasets show that HMEAE can effectively leverage useful knowledge from the concept hierarchy and significantly outperform the state-of-the-art baselines. The source code can be obtained from https://github.com/thunlp/HMEAE.
Entity alignment typically suffers from the issues of structural heterogeneity and limited seed alignments. In this paper, we propose a novel Multi-channel Graph Neural Network model (MuGNN) to learn alignment-oriented knowledge graph (KG) embeddings by robustly encoding two KGs via multiple channels. Each channel encodes KGs via different relation weighting schemes with respect to self-attention towards KG completion and cross-KG attention for pruning exclusive entities respectively, which are further combined via pooling techniques. Moreover, we also infer and transfer rule knowledge for completing two KGs consistently. MuGNN is expected to reconcile the structural differences of two KGs, and thus make better use of seed alignments. Extensive experiments on five publicly available datasets demonstrate our superior performance (5% Hits@1 up on average). Source code and data used in the experiments can be accessed at https://github.com/thunlp/MuGNN .
As Massive Open Online Courses (MOOCs) become increasingly popular, it is promising to automatically provide extracurricular knowledge for MOOC users. Suffering from semantic drifts and lack of knowledge guidance, existing methods can not effectively expand course concepts in complex MOOC environments. In this paper, we first build a novel boundary during searching for new concepts via external knowledge base and then utilize heterogeneous features to verify the high-quality results. In addition, to involve human efforts in our model, we design an interactive optimization mechanism based on a game. Our experiments on the four datasets from Coursera and XuetangX show that the proposed method achieves significant improvements(+0.19 by MAP) over existing methods.
Fine-grained entity typing aims at identifying the semantic type of an entity in KB. Type information is very important in knowledge bases, but are unfortunately incomplete even in some large knowledge bases. Limitations of existing methods are either ignoring the structure and type information in KB or requiring large scale annotated corpus. To address these issues, we propose an attributed and predictive entity embedding method, which can fully utilize various kinds of information comprehensively. Extensive experiments on two real DBpedia datasets show that our proposed method significantly outperforms 8 state-of-the-art methods, with 4.0% and 5.2% improvement in Mi-F1 and Ma-F1, respectively.
Entity Linking aims to link entity mentions in texts to knowledge bases, and neural models have achieved recent success in this task. However, most existing methods rely on local contexts to resolve entities independently, which may usually fail due to the data sparsity of local information. To address this issue, we propose a novel neural model for collective entity linking, named as NCEL. NCEL apply Graph Convolutional Network to integrate both local contextual features and global coherence information for entity linking. To improve the computation efficiency, we approximately perform graph convolution on a subgraph of adjacent entity mentions instead of those in the entire text. We further introduce an attention scheme to improve the robustness of NCEL to data noise and train the model on Wikipedia hyperlinks to avoid overfitting and domain bias. In experiments, we evaluate NCEL on five publicly available datasets to verify the linking performance as well as generalization ability. We also conduct an extensive analysis of time complexity, the impact of key modules, and qualitative results, which demonstrate the effectiveness and efficiency of our proposed method.
Jointly representation learning of words and entities benefits many NLP tasks, but has not been well explored in cross-lingual settings. In this paper, we propose a novel method for joint representation learning of cross-lingual words and entities. It captures mutually complementary knowledge, and enables cross-lingual inferences among knowledge bases and texts. Our method does not require parallel corpus, and automatically generates comparable data via distant supervision using multi-lingual knowledge bases. We utilize two types of regularizers to align cross-lingual words and entities, and design knowledge attention and cross-lingual attention to further reduce noises. We conducted a series of experiments on three tasks: word translation, entity relatedness, and cross-lingual entity linking. The results, both qualitative and quantitative, demonstrate the significance of our method.
Concepts, which represent a group of different instances sharing common properties, are essential information in knowledge representation. Most conventional knowledge embedding methods encode both entities (concepts and instances) and relations as vectors in a low dimensional semantic space equally, ignoring the difference between concepts and instances. In this paper, we propose a novel knowledge graph embedding model named TransC by differentiating concepts and instances. Specifically, TransC encodes each concept in knowledge graph as a sphere and each instance as a vector in the same semantic space. We use the relative positions to model the relations between concepts and instances (i.e.,instanceOf), and the relations between concepts and sub-concepts (i.e., subClassOf). We evaluate our model on both link prediction and triple classification tasks on the dataset based on YAGO. Experimental results show that TransC outperforms state-of-the-art methods, and captures the semantic transitivity for instanceOf and subClassOf relation. Our codes and datasets can be obtained from https://github.com/davidlvxin/TransC.
We release an open toolkit for knowledge embedding (OpenKE), which provides a unified framework and various fundamental models to embed knowledge graphs into a continuous low-dimensional space. OpenKE prioritizes operational efficiency to support quick model validation and large-scale knowledge representation learning. Meanwhile, OpenKE maintains sufficient modularity and extensibility to easily incorporate new models into the framework. Besides the toolkit, the embeddings of some existing large-scale knowledge graphs pre-trained by OpenKE are also available, which can be directly applied for many applications including information retrieval, personalized recommendation and question answering. The toolkit, documentation, and pre-trained embeddings are all released on http://openke.thunlp.org/.
To enhance the expression ability of distributional word representation learning model, many researchers tend to induce word senses through clustering, and learn multiple embedding vectors for each word, namely multi-prototype word embedding model. However, most related work ignores the relatedness among word senses which actually plays an important role. In this paper, we propose a novel approach to capture word sense relatedness in multi-prototype word embedding model. Particularly, we differentiate the original sense and extended senses of a word by introducing their global occurrence information and model their relatedness through the local textual context information. Based on the idea of fuzzy clustering, we introduce a random process to integrate these two types of senses and design two non-parametric methods for word sense induction. To make our model more scalable and efficient, we use an online joint learning framework extended from the Skip-gram model. The experimental results demonstrate that our model outperforms both conventional single-prototype embedding models and other multi-prototype embedding models, and achieves more stable performance when trained on smaller data.
Massive Open Online Courses (MOOCs), offering a new way to study online, are revolutionizing education. One challenging issue in MOOCs is how to design effective and fine-grained course concepts such that students with different backgrounds can grasp the essence of the course. In this paper, we conduct a systematic investigation of the problem of course concept extraction for MOOCs. We propose to learn latent representations for candidate concepts via an embedding-based method. Moreover, we develop a graph-based propagation algorithm to rank the candidate concepts based on the learned representations. We evaluate the proposed method using different courses from XuetangX and Coursera. Experimental results show that our method significantly outperforms all the alternative methods (+0.013-0.318 in terms of R-precision; p<<0.01, t-test).
What prerequisite knowledge should students achieve a level of mastery before moving forward to learn subsequent coursewares? We study the extent to which the prerequisite relation between knowledge concepts in Massive Open Online Courses (MOOCs) can be inferred automatically. In particular, what kinds of information can be leverage to uncover the potential prerequisite relation between knowledge concepts. We first propose a representation learning-based method for learning latent representations of course concepts, and then investigate how different features capture the prerequisite relations between concepts. Our experiments on three datasets form Coursera show that the proposed method achieves significant improvements (+5.9-48.0% by F1-score) comparing with existing methods.
Integrating text and knowledge into a unified semantic space has attracted significant research interests recently. However, the ambiguity in the common space remains a challenge, namely that the same mention phrase usually refers to various entities. In this paper, to deal with the ambiguity of entity mentions, we propose a novel Multi-Prototype Mention Embedding model, which learns multiple sense embeddings for each mention by jointly modeling words from textual contexts and entities derived from a knowledge base. In addition, we further design an efficient language model based approach to disambiguate each mention to a specific sense. In experiments, both qualitative and quantitative analysis demonstrate the high quality of the word, entity and multi-prototype mention embeddings. Using entity linking as a study case, we apply our disambiguation method as well as the multi-prototype mention embeddings on the benchmark dataset, and achieve state-of-the-art performance.