Xiaodan Zhu


2024

pdf bib
Code Prompting Elicits Conditional Reasoning Abilities in Text+Code LLMs
Haritz Puerto | Martin Tutek | Somak Aditya | Xiaodan Zhu | Iryna Gurevych
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Reasoning is a fundamental component of language understanding. Recent prompting techniques, such as chain of thought, have consistently improved LLMs’ performance on various reasoning tasks. Nevertheless, there is still little understanding of what triggers reasoning abilities in LLMs in the inference stage. In this paper, we investigate the effect of the input representation on the reasoning abilities of LLMs. We hypothesize that representing natural language tasks as code can enhance specific reasoning abilities such as entity tracking or logical reasoning. To study this, we propose code prompting, a methodology we operationalize as a chain of prompts that transforms a natural language problem into code and directly prompts the LLM using the generated code without resorting to external code execution. We find that code prompting exhibits a high-performance boost for multiple LLMs (up to 22.52 percentage points on GPT 3.5, 7.75 on Mixtral, and 16.78 on Mistral) across multiple conditional reasoning datasets. We then conduct comprehensive experiments to understand how the code representation triggers reasoning abilities and which capabilities are elicited in the underlying models. Our analysis on GPT 3.5 reveals that the code formatting of the input problem is essential for performance improvement. Furthermore, the code representation improves sample efficiency of in-context learning and facilitates state tracking of entities.

pdf bib
Exploring the Role of Reasoning Structures for Constructing Proofs in Multi-Step Natural Language Reasoning with Large Language Models
Zi’ou Zheng | Christopher Malon | Martin Renqiang Min | Xiaodan Zhu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

When performing complex multi-step reasoning tasks, the ability of Large Language Models (LLMs) to derive structured intermediate proof steps is important for ensuring that the models truly perform the desired reasoning and for improving models’ explainability. This paper is centred around a focused study: whether the current state-of-the-art generalist LLMs can leverage the structures in a few examples to better construct the proof structures with in-context learning. Our study specifically focuses on structure-aware demonstration and structure-aware pruning. We demonstrate that they both help improve performance. A detailed analysis is provided to help understand the results.

pdf bib
SMARTCAL: An Approach to Self-Aware Tool-Use Evaluation and Calibration
Yuanhao Shen | Xiaodan Zhu | Lei Chen
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track

The tool-use ability of Large Language Models (LLMs) has a profound impact on a wide range of applications. However, LLMs’ self-awareness and self-control capability in appropriately using tools remains understudied. The problem is consequential as it alarms a potential risk of degraded performance and poses a threat to trustworthiness on the models. In this paper, we conduct a study on a family of state-of-the-art LLMs on three datasets with two mainstream tool-use frameworks. Our study reveals the tool-abuse behavior of LLMs, a tendency for models to misuse tools along with models’ frequent overconfidence in tool choice. We also find that this is a common issue regardless of model capability. Accordingly, we propose a novel framework, SMARTCAL, to mitigate the observed issues, and our results show an average 8.6 percent increase in the QA performance in three testing datasets and 21.6 percent lower Expected Calibration Error (ECE) than existing methods.

pdf bib
Can Machine Unlearning Reduce Social Bias in Language Models?
Omkar Dige | Diljot Arneja | Tsz Fung Yau | Qixuan Zhang | Mohammad Bolandraftar | Xiaodan Zhu | Faiza Khan Khattak
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track

Mitigating bias in language models (LMs) has become a critical problem due to the widespread deployment of LMs in the industry and customer-facing applications. Numerous approaches revolve around data pre-processing and subsequent fine-tuning of language models, tasks that can be both time-consuming and computationally demanding. As alternatives, machine unlearning techniques are being explored, yet there is a notable lack of comparative studies evaluating the effectiveness of these methods. In this work, we explore the effectiveness of two machine unlearning methods: Partitioned Contrastive Gradient Unlearning (PCGU) applied on decoder models, and Negation via Task Vector, and compare them with Direct Preference Optimization (DPO) to reduce social biases in open-source LMs such as LLaMA-2 and OPT. We also implement distributed PCGU for large models. It is empirically shown, through quantitative and qualitative analyses, that negation via Task Vector method outperforms PCGU and is comparable to DPO in debiasing models with minimum deterioration in model performance and perplexity. Negation via Task Vector reduces the bias score by 25.5% for LLaMA-2 and achieves bias reduction of up to 40% for OPT models. Moreover, it can be easily tuned to balance the trade-off between bias reduction and generation quality, unlike DPO.

pdf bib
The State of the Art of Large Language Models on Chartered Financial Analyst Exams
Mahmoud Mahfouz | Ethan Callanan | Mathieu Sibue | Antony Papadimitriou | Zhiqiang Ma | Xiaomo Liu | Xiaodan Zhu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track

The Chartered Financial Analyst (CFA) program is one of the most widely recognized financial certifications globally. In this work, we test a variety of state-of-the-art large language models (LLMs) on mock CFA exams to provide an overview of their financial analysis capabilities using the same evaluation standards applied for human professionals. We benchmark five leading proprietary models and eight open-source models on all three levels of the CFA through challenging multiple-choice and essay questions. We find that flagship proprietary models perform relatively well and can solidly pass levels I and II exams, but fail at level III due to essay questions. Open-source models generally fall short of estimated passing scores, but still show strong performance considering their size, cost, and availability advantages. We also find that using textbook data helps bridge the gap between open-source and proprietary models to a certain extent, despite reduced gains in CFA levels II and III. By understanding the current financial analysis abilities of LLMs, we aim to guide practitioners on which models are best suited for enhancing automation in the financial industry.

pdf bib
DARA: Decomposition-Alignment-Reasoning Autonomous Language Agent for Question Answering over Knowledge Graphs
Haishuo Fang | Xiaodan Zhu | Iryna Gurevych
Findings of the Association for Computational Linguistics: ACL 2024

Answering Questions over Knowledge Graphs (KGQA) is key to well-functioning autonomous language agents in various real-life applications. To improve the neural-symbolic reasoning capabilities of language agents powered by Large Language Models (LLMs) in KGQA, we propose the Decomposition-Alignment-Reasoning Agent (DARA) framework. DARA effectively parses questions into formal queries through a dual mechanism: high-level iterative task decomposition and low-level task grounding. Importantly, DARA can be efficiently trained with a small number of high-quality reasoning trajectories. Our experimental results demonstrate that DARA fine-tuned on LLMs (e.g. Llama-2-7B, Mistral) outperforms both in-context learning-based agents with GPT-4 and alternative fine-tuned agents, across different benchmarks, making such models more accessible for real-life applications. We also show that DARA attains performance comparable to state-of-the-art enumerating-and-ranking-based methods for KGQA.

pdf bib
Fine-Tuning Language Models with Differential Privacy through Adaptive Noise Allocation
Xianzhi Li | Ran Zmigrod | Zhiqiang Ma | Xiaomo Liu | Xiaodan Zhu
Findings of the Association for Computational Linguistics: EMNLP 2024

Language models are capable of memorizing detailed patterns and information, leading to a double-edged effect: they achieve impressive modeling performance on downstream tasks with the stored knowledge but also raise significant privacy concerns. Traditional differential privacy based training approaches offer robust safeguards by employing a uniform noise distribution across all parameters. However, this overlooks the distinct sensitivities and contributions of individual parameters in privacy protection and often results in suboptimal models. To address these limitations, we propose ANADP, a novel algorithm that adaptively allocates additive noise based on the importance of model parameters. We demonstrate that ANADP narrows the performance gap between regular fine-tuning and traditional DP fine-tuning on a series of datasets while maintaining the required privacy constraints.

pdf bib
Misinformation with Legal Consequences (MisLC): A New Task Towards Harnessing Societal Harm of Misinformation
Chu Fei Luo | Radin Shayanfar | Rohan V Bhambhoria | Samuel Dahan | Xiaodan Zhu
Findings of the Association for Computational Linguistics: EMNLP 2024

Misinformation, defined as false or inaccurate information, can result in significant societal harm when it is spread with malicious or even unintentional intent. The rapid online information exchange necessitates advanced detection mechanisms to mitigate misinformation-induced harm. Existing research, however, has predominantly focused on the veracity of information, overlooking the legal implications and consequences of misinformation. In this work, we take a novel angle to consolidate the definition of misinformation detection using legal issues as a measurement of societal ramifications, aiming to bring interdisciplinary efforts to tackle misinformation and its consequence. We introduce a new task: Misinformation with Legal Consequence (MisLC), which leverages definitions from a wide range of legal domains covering 4 broader legal topics and 11 fine-grained legal issues, including hate speech, election laws, and privacy regulations. For this task, we advocate a two-step dataset curation approach that utilizes crowd-sourced checkworthiness and expert evaluations of misinformation. We provide insights about the MisLC task through empirical evidence, from the problem definition to experiments and expert involvement. While the latest large language models and retrieval-augmented generation are effective baselines for the task, we find they are still far from replicating expert performance.

pdf bib
Can GPT models be Financial Analysts? An Evaluation of ChatGPT and GPT-4 on mock CFA Exams
Ethan Callanan | Amarachi Mbakwe | Antony Papadimitriou | Yulong Pei | Mathieu Sibue | Xiaodan Zhu | Zhiqiang Ma | Xiaomo Liu | Sameena Shah
Proceedings of the Eighth Financial Technology and Natural Language Processing and the 1st Agent AI for Scenario Planning

pdf bib
SpaRC and SpaRP: Spatial Reasoning Characterization and Path Generation for Understanding Spatial Reasoning Capability of Large Language Models
Md Imbesat Rizvi | Xiaodan Zhu | Iryna Gurevych
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Spatial reasoning is a crucial component of both biological and artificial intelligence. In this work, we present a comprehensive study of the capability of current state-of-the-art large language models (LLMs) on spatial reasoning. To support our study, we created and contribute a novel Spatial Reasoning Characterization (SpaRC) framework and Spatial Reasoning Paths (SpaRP) datasets, to enable an in-depth understanding of the spatial relations and compositions as well as the usefulness of spatial reasoning chains. We found that all the state-of-the-art LLMs do not perform well on the datasets—their performances are consistently low across different setups. The spatial reasoning capability improves substantially as model sizes scale up. Finetuning both large language models (e.g., Llama-2-70B) and smaller ones (e.g., Llama-2-13B) can significantly improve their F1-scores by 7–32 absolute points. We also found that the top proprietary LLMs still significantly outperform their open-source counterparts in topological spatial understanding and reasoning.

pdf bib
HGOT: Hierarchical Graph of Thoughts for Retrieval-Augmented In-Context Learning in Factuality Evaluation
Yihao Fang | Stephen Thomas | Xiaodan Zhu
Proceedings of the 4th Workshop on Trustworthy Natural Language Processing (TrustNLP 2024)

With the widespread adoption of large language models (LLMs) in numerous applications, the challenge of factuality and the propensity for hallucinations has emerged as a significant concern. To address this issue, particularly in retrieval-augmented in-context learning, we introduce the hierarchical graph of thoughts (HGOT), a structured, multi-layered graph approach designed to enhance the retrieval of pertinent passages during in-context learning. The framework utilizes the emergent planning capabilities of LLMs, employing the divide-and-conquer strategy to break down complex queries into manageable sub-queries. It refines self-consistency majority voting for answer selection, which incorporates the recently proposed citation recall and precision metrics to assess the quality of thoughts, linking an answer’s credibility intrinsically to the thought’s quality. This methodology introduces a weighted system in majority voting, prioritizing answers based on the citation quality of their thoughts. Additionally, we propose a scoring mechanism for evaluating retrieved passages, considering factors such as citation frequency and quality, self-consistency confidence, and the retrieval module’s ranking. Experiments indicate that HGOT excels as a versatile approach, outperforming competing models in FEVER by up to 7% and matching leading models such as Retrieve-then-Read in Open-SQuAD, and DSP in HotPotQA, demonstrating its efficacy in enhancing LLMs’ factuality.

2023

pdf bib
NatLogAttack: A Framework for Attacking Natural Language Inference Models with Natural Logic
Zi’ou Zheng | Xiaodan Zhu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Reasoning has been a central topic in artificial intelligence from the beginning. The recent progress made on distributed representation and neural networks continues to improve the state-of-the-art performance of natural language inference. However, it remains an open question whether the models perform real reasoning to reach their conclusions or rely on spurious correlations. Adversarial attacks have proven to be an important tool to help evaluate the Achilles’ heel of the victim models. In this study, we explore the fundamental problem of developing attack models based on logic formalism. We propose NatLogAttack to perform systematic attacks centring around natural logic, a classical logic formalism that is traceable back to Aristotle’s syllogism and has been closely developed for natural language inference. The proposed framework renders both label-preserving and label-flipping attacks. We show that compared to the existing attack models, NatLogAttack generates better adversarial examples with fewer visits to the victim models. The victim models are found to be more vulnerable under the label-flipping setting. NatLogAttack provides a tool to probe the existing and future NLI models’ capacity from a key viewpoint and we hope more logic-based attacks will be further explored for understanding the desired property of reasoning.

pdf bib
Prefix Propagation: Parameter-Efficient Tuning for Long Sequences
Jonathan Li | Will Aitken | Rohan Bhambhoria | Xiaodan Zhu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Parameter-efficient tuning aims to mitigate the large memory requirements of adapting pretrained language models for downstream tasks. For example, one popular method, prefix-tuning, prepends trainable tokens to sequences while freezing the rest of the model’s parameters. Although such models attain comparable performance with fine-tuning when applied to sequences with short to moderate lengths, we show their inferior performance when modelling long sequences. To bridge this gap, we propose prefix-propagation, a simple but effective approach that conditions prefixes on previous hidden states. We empirically demonstrate that prefix-propagation outperforms prefix-tuning across long-document tasks, while using 50% fewer parameters. To further investigate the proposed architecture, we also show its advantage in calibration, and perform additional study on its relationship with kernel attention. To the best of our knowledge, this work is the first to focus on parameter-efficient learning for long-sequence language tasks.

pdf bib
A Simple and Effective Framework for Strict Zero-Shot Hierarchical Classification
Rohan Bhambhoria | Lei Chen | Xiaodan Zhu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

In recent years, large language models (LLMs) have achieved strong performance on benchmark tasks, especially in zero or few-shot settings. However, these benchmarks often do not adequately address the challenges posed in the real-world, such as that of hierarchical classification. In order to address this challenge, we propose refactoring conventional tasks on hierarchical datasets into a more indicative long-tail prediction task. We observe LLMs are more prone to failure in these cases. To address these limitations, we propose the use of entailment-contradiction prediction in conjunction with LLMs, which allows for strong performance in a strict zero-shot setting. Importantly, our method does not require any parameter updates, a resource-intensive process and achieves strong performance across multiple datasets.

pdf bib
Weighted Contrastive Learning With False Negative Control to Help Long-tailed Product Classification
Tianqi Wang | Lei Chen | Xiaodan Zhu | Younghun Lee | Jing Gao
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track)

Item categorization (IC) aims to classify product descriptions into leaf nodes in a categorical taxonomy, which is a key technology used in a wide range of applications. Along with the fact that most datasets often has a long-tailed distribution, classification performances on tail labels tend to be poor due to scarce supervision, causing many issues in real-life applications. To address IC task’s long-tail issue, K-positive contrastive loss (KCL) is proposed on image classification task and can be applied on the IC task when using text-based contrastive learning, e.g., SimCSE. However, one shortcoming of using KCL has been neglected in previous research: false negative (FN) instances may harm the KCL’s representation learning. To address the FN issue in the KCL, we proposed to re-weight the positive pairs in the KCL loss with a regularization that the sum of weights should be constrained to K+1 as close as possible. After controlling FN instances with the proposed method, IC performance has been further improved and is superior to other LT-addressing methods.

pdf bib
Prototype-Based Interpretability for Legal Citation Prediction
Chu Fei Luo | Rohan Bhambhoria | Samuel Dahan | Xiaodan Zhu
Findings of the Association for Computational Linguistics: ACL 2023

Deep learning has made significant progress in the past decade, and demonstrates potential to solve problems with extensive social impact. In high-stakes decision making areas such as law, experts often require interpretability for automatic systems to be utilized in practical settings. In this work, we attempt to address these requirements applied to the important problem of legal citation prediction (LCP). We design the task with parallels to the thought-process of lawyers, i.e., with reference to both precedents and legislative provisions. After initial experimental results, we refine the target citation predictions with the feedback of legal experts. Additionally, we introduce a prototype architecture to add interpretability, achieving strong performance while adhering to decision parameters used by lawyers. Our study builds on and leverages the state-of-the-art language processing models for law, while addressing vital considerations for high-stakes tasks with practical societal impact.

pdf bib
JECC: Commonsense Reasoning Tasks Derived from Interactive Fictions
Mo Yu | Yi Gu | Xiaoxiao Guo | Yufei Feng | Xiaodan Zhu | Michael Greenspan | Murray Campbell | Chuang Gan
Findings of the Association for Computational Linguistics: ACL 2023

Commonsense reasoning simulates the human ability to make presumptions about our physical world, and it is an essential cornerstone in building general AI systems. We proposea new commonsense reasoning dataset based on human’s Interactive Fiction (IF) gameplaywalkthroughs as human players demonstrate plentiful and diverse commonsense reasoning. The new dataset provides a natural mixture of various reasoning types and requires multi-hopreasoning. Moreover, the IF game-based construction procedure requires much less humaninterventions than previous ones. Different from existing benchmarks, our dataset focuseson the assessment of functional commonsense knowledge rules rather than factual knowledge. Hence, in order to achieve higher performance on our tasks, models need to effectively uti-lize such functional knowledge to infer the outcomes of actions, rather than relying solely onmemorizing facts. Experiments show that the introduced dataset is challenging to previousmachine reading models as well as the new large language models with a significant 20%performance gap compared to human experts.

pdf bib
Knowledge-Selective Pretraining for Attribute Value Extraction
Hui Liu | Qingyu Yin | Zhengyang Wang | Chenwei Zhang | Haoming Jiang | Yifan Gao | Zheng Li | Xian Li | Chao Zhang | Bing Yin | William Wang | Xiaodan Zhu
Findings of the Association for Computational Linguistics: EMNLP 2023

Attribute Value Extraction (AVE) aims to retrieve the values of attributes from the product profiles. The state-of-the-art methods tackle the AVE task through a question-answering (QA) paradigm, where the value is predicted from the context (i.e. product profile) given a query (i.e. attributes). Despite of the substantial advancements that have been made, the performance of existing methods on rare attributes is still far from satisfaction, and they cannot be easily extended to unseen attributes due to the poor generalization ability. In this work, we propose to leverage pretraining and transfer learning to address the aforementioned weaknesses. We first collect the product information from various E-commerce stores and retrieve a large number of (profile, attribute, value) triples, which will be used as the pretraining corpus. To more effectively utilize the retrieved corpus, we further design a Knowledge-Selective Framework (KSelF) based on query expansion that can be closely combined with the pretraining corpus to boost the performance. Meanwhile, considering the public AE-pub dataset contains considerable noise, we construct and contribute a larger benchmark EC-AVE collected from E-commerce websites. We conduct evaluation on both of these datasets. The experimental results demonstrate that our proposed KSelF achieves new state-of-the-art performance without pretraining. When incorporated with the pretraining corpus, the performance of KSelF can be further improved, particularly on the attributes with limited training resources.

pdf bib
Legally Enforceable Hate Speech Detection for Public Forums
Chu Luo | Rohan Bhambhoria | Samuel Dahan | Xiaodan Zhu
Findings of the Association for Computational Linguistics: EMNLP 2023

Hate speech causes widespread and deep-seated societal issues. Proper enforcement of hate speech laws is key for protecting groups of people against harmful and discriminatory language. However, determining what constitutes hate speech is a complex task that is highly open to subjective interpretations. Existing works do not align their systems with enforceable definitions of hate speech, which can make their outputs inconsistent with the goals of regulators. This research introduces a new perspective and task for enforceable hate speech detection centred around legal definitions, and a dataset annotated on violations of eleven possible definitions by legal experts. Given the challenge of identifying clear, legally enforceable instances of hate speech, we augment the dataset with expert-generated samples and an automatically mined challenge set. We experiment with grounding the model decision in these definitions using zero-shot and few-shot prompting. We then report results on several large language models (LLMs). With this task definition, automatic hate speech detection can be more closely aligned to enforceable laws, and hence assist in more rigorous enforcement of legal protections against harmful speech in public forums.

pdf bib
OssCSE: Overcoming Surface Structure Bias in Contrastive Learning for Unsupervised Sentence Embedding
Zhan Shi | Guoyin Wang | Ke Bai | Jiwei Li | Xiang Li | Qingjun Cui | Belinda Zeng | Trishul Chilimbi | Xiaodan Zhu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Contrastive learning has been demonstrated effective in unsupervised sentence representation learning. Given one sentence, positive pairs are obtained by passing the sentence to the encoder twice using the different dropout masks, and negative pairs are obtained by taking another sentence in the same mini-batch. However, the method suffers from the surface structure bias, i.e., sentences with similar surface structures will be regarded as close in semantics while sentences with dissimilar surface structures will be viewed as distinct in semantics. This leads to the result that paraphrasing a sentence that is dissimilar in surface structure will receive a lower semantic similarity score than inserting a negative word into the sentence. In this paper, we first verify the bias by collecting a sentence transformation testset. Then we systematically probe the existing models by proposing novel splits based on benchmark datasets in accordance with semantic and surface structure similarity. We tackle the bias in two aspects: balancing the learning target by augmenting with data that counters the bias, and meanwhile preserving word semantics by leveraging recall loss to prevent catastrophic forgetting. We evaluate our model on standard semantic textual similarity (STS) tasks using different pre-trained backbones and achieve state-of-the-art averaged performance across the STS benchmarks. Particularly, our models that are fine-tuned with RoBERTabase and RoBERTalarge achieve significantly better performance on most benchmark datasets.

pdf bib
Are ChatGPT and GPT-4 General-Purpose Solvers for Financial Text Analytics? A Study on Several Typical Tasks
Xianzhi Li | Samuel Chan | Xiaodan Zhu | Yulong Pei | Zhiqiang Ma | Xiaomo Liu | Sameena Shah
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track

The most recent large language models (LLMs) such as ChatGPT and GPT-4 have shown exceptional capabilities of generalist models, achieving state-of-the-art performance on a wide range of NLP tasks with little or no adaptation. How effective are such models in the finance domain? Understanding this basic question would have a significant impact on many downstream financial analytical tasks. In this paper, we conduct empirical studies and provide experimental evidences of their performance on a wide variety of financial text analytical problems, using eight benchmark datasets from five categories of tasks. We report both the strengths and limitations of the current models by comparing them to the state-of-the-art fine-tuned approaches and the recently released domain-specific pretrained models. We hope our study can help to understand the capability of the existing models in the financial domain and facilitate further improvements.

pdf bib
Effectiveness of Data Augmentation for Parameter Efficient Tuning with Limited Data
Stephen Obadinma | Hongyu Guo | Xiaodan Zhu
Proceedings of the 8th Workshop on Representation Learning for NLP (RepL4NLP 2023)

Recent work has demonstrated that using parameter efficient tuning techniques such as prefix tuning (or P-tuning) on pretrained language models can yield performance that is comparable or superior to fine-tuning while dramatically reducing trainable parameters. Nevertheless, the effectiveness of such methods under the context of data augmentation, a common strategy to improve learning under low data regimes, has not been fully explored. In this paper, we examine the effectiveness of several popular task-agnostic data augmentation techniques, i.e., EDA, Back Translation, and Mixup, when using two general parameter efficient tuning methods, P-tuning v2 and LoRA, under data scarcity. We show that data augmentation can be used to boost the performance of P-tuning and LoRA models, but the effectiveness of each technique varies and certain methods can lead to a notable degradation in performance, particularly when using larger models and on harder tasks. We further analyze the sentence representations of P-tuning compared to fine-tuning to help understand the above behaviour, and reveal how P-tuning generally presents a more limited ability to separate the sentence embeddings from different classes of augmented data. In addition, it displays poorer performance on heavily altered data. However, we demonstrate that by adding a simple contrastive loss function it can help mitigate such issues for prefix tuning, resulting in sizable improvements to augmented data performance.

pdf bib
ChatGPT as Data Augmentation for Compositional Generalization: A Case Study in Open Intent Detection
Yihao Fang | Xianzhi Li | Stephen Thomas | Xiaodan Zhu
Proceedings of the Fifth Workshop on Financial Technology and Natural Language Processing and the Second Multimodal AI For Financial Forecasting

2022

pdf bib
Developing Prefix-Tuning Models for Hierarchical Text Classification
Lei Chen | Houwei Chou | Xiaodan Zhu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track

Hierarchical text classification (HTC) is a key problem and task in many industrial applications, which aims to predict labels organized in a hierarchy for given input text. For example, HTC can group the descriptions of online products into a taxonomy or organizing customer reviews into a hierarchy of categories. In real-life applications, while Pre-trained Language Models (PLMs) have dominated many NLP tasks, they face significant challenges too—the conventional fine-tuning process needs to modify and save models with a huge number of parameters. This is becoming more critical for HTC in both global and local modelling—the latter needs to learn multiple classifiers at different levels/nodes in a hierarchy. The concern will be even more serious since PLM sizes are continuing to increase in order to attain more competitive performances. Most recently, prefix tuning has become a very attractive technology by only tuning and saving a tiny set of parameters. Exploring prefix turning for HTC is hence highly desirable and has timely impact. In this paper, we investigate prefix tuning on HTC in two typical setups: local and global HTC. Our experiment shows that the prefix-tuning model only needs less than 1% of parameters and can achieve performance comparable to regular full fine-tuning. We demonstrate that using contrastive learning in learning prefix vectors can further improve HTC performance.

pdf bib
Learning Better Intent Representations for Financial Open Intent Classification
Xianzhi Li | Will Aitken | Xiaodan Zhu | Stephen W. Thomas
Proceedings of the Fourth Workshop on Financial Technology and Natural Language Processing (FinNLP)

With the recent surge of NLP technologies in the financial domain, banks and other financial entities have adopted virtual agents (VA) to assist customers. A challenging problem for VAs in this domain is determining a user’s reason or intent for contacting the VA, especially when the intent was unseen or open during the VA’s training. One method for handling open intents is adaptive decision boundary (ADB) post-processing, which learns tight decision boundaries from intent representations to separate known and open intents. We propose incorporating two methods for supervised pre-training of intent representations: prefix tuning and fine-tuning just the last layer of a large language model (LLM). With this proposal, our accuracy is 1.63% - 2.07% higher than the prior state-of-the-art ADB method for open intent classification on the banking77 benchmark amongst others. Notably, we only supplement the original ADB model with 0.1% additional trainable parameters. Ablation studies also determine that our method yields better results than full fine-tuning the entire model. We hypothesize that our findings could stimulate a new optimal method of downstream tuning that combines parameter efficient tuning modules with fine-tuning a subset of the base model’s layers.

pdf bib
Exploring Robustness of Prefix Tuning in Noisy Data: A Case Study in Financial Sentiment Analysis
Sudhandar Balakrishnan | Yihao Fang | Xiaodan Zhu
Proceedings of the Fourth Workshop on Financial Technology and Natural Language Processing (FinNLP)

The invention of transformer-based models such as BERT, GPT, and RoBERTa has enabled researchers and financial companies to finetune these powerful models and use them in different downstream tasks to achieve state-of-the-art performance. Recently, a lightweight alternative (approximately 0.1% - 3% of the original model parameters) to fine-tuning, known as prefix tuning has been introduced. This method freezes the model parameters and only updates the prefix to achieve performance comparable to full fine-tuning. Prefix tuning enables researchers and financial practitioners to achieve similar results with much fewer parameters. In this paper, we explore the robustness of prefix tuning when facing noisy data. Our experiments demonstrate that fine-tuning is more robust to noise than prefix tuning—the latter method faces a significant decrease in performance on most corrupted data sets with increasing noise levels. Furthermore, prefix tuning has high variances on the F1 scores compared to fine-tuning in many corruption methods. We strongly advocate that caution should be carefully taken when applying the state-of-the-art prefix tuning method to noisy data.

pdf bib
Neuro-symbolic Natural Logic with Introspective Revision for Natural Language Inference
Yufei Feng | Xiaoyu Yang | Xiaodan Zhu | Michael Greenspan
Transactions of the Association for Computational Linguistics, Volume 10

We introduce a neuro-symbolic natural logic framework based on reinforcement learning with introspective revision. The model samples and rewards specific reasoning paths through policy gradient, in which the introspective revision algorithm modifies intermediate symbolic reasoning steps to discover reward-earning operations as well as leverages external knowledge to alleviate spurious reasoning and training inefficiency. The framework is supported by properly designed local relation models to avoid input entangling, which helps ensure the interpretability of the proof paths. The proposed model has built-in interpretability and shows superior capability in monotonicity inference, systematic generalization, and interpretability, compared with previous models on the existing datasets.

pdf bib
Parameter-Efficient Legal Domain Adaptation
Jonathan Li | Rohan Bhambhoria | Xiaodan Zhu
Proceedings of the Natural Legal Language Processing Workshop 2022

Seeking legal advice is often expensive. Recent advancements in machine learning for solving complex problems can be leveraged to help make legal services more accessible to the public. However, real-life applications encounter significant challenges. State-of-the-art language models are growing increasingly large, making parameter-efficient learning increasingly important. Unfortunately, parameter-efficient methods perform poorly with small amounts of data, which are common in the legal domain (where data labelling costs are high). To address these challenges, we propose parameter-efficient legal domain adaptation, which uses vast unsupervised legal data from public legal forums to perform legal pre-training. This method exceeds or matches the fewshot performance of existing models such as LEGAL-BERT on various legal tasks while tuning only approximately 0.1% of model parameters. Additionally, we show that our method can achieve calibration comparable to existing methods across several tasks. To the best of our knowledge, this work is among the first to explore parameter-efficient methods of tuning language models in the legal domain.

2021

pdf bib
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)
Alexis Palmer | Nathan Schneider | Natalie Schluter | Guy Emerson | Aurelie Herbelot | Xiaodan Zhu
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

pdf bib
SemEval-2021 Task 4: Reading Comprehension of Abstract Meaning
Boyuan Zheng | Xiaoyu Yang | Yu-Ping Ruan | Zhenhua Ling | Quan Liu | Si Wei | Xiaodan Zhu
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

This paper introduces the SemEval-2021 shared task 4: Reading Comprehension of Abstract Meaning (ReCAM). This shared task is designed to help evaluate the ability of machines in representing and understanding abstract concepts. Given a passage and the corresponding question, a participating system is expected to choose the correct answer from five candidates of abstract concepts in cloze-style machine reading comprehension tasks. Based on two typical definitions of abstractness, i.e., the imperceptibility and nonspecificity, our task provides three subtasks to evaluate models’ ability in comprehending the two types of abstract meaning and the models’ generalizability. Specifically, Subtask 1 aims to evaluate how well a participating system models concepts that cannot be directly perceived in the physical world. Subtask 2 focuses on models’ ability in comprehending nonspecific concepts located high in a hypernym hierarchy given the context of a passage. Subtask 3 aims to provide some insights into models’ generalizability over the two types of abstractness. During the SemEval-2021 official evaluation period, we received 23 submissions to Subtask 1 and 28 to Subtask 2. The participating teams additionally made 29 submissions to Subtask 3. The leaderboard and competition website can be found at https://competitions.codalab.org/competitions/26153. The data and baseline code are available at https://github.com/boyuanzheng010/SemEval2021-Reading-Comprehension-of-Abstract-Meaning.

pdf bib
THiFly_Queens at SemEval-2021 Task 9: Two-stage Statement Verification with Adaptive Ensembling and Slot-based Operation
Yuxuan Zhou | Kaiyin Zhou | Xien Liu | Ji Wu | Xiaodan Zhu
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

This paper describes our system for verifying statements with tables at SemEval-2021 Task 9. We developed a two-stage verifying system based on the latest table-based pre-trained model GraPPa. Multiple networks are devised to verify different types of statements in the competition dataset and an adaptive model ensembling technique is applied to ensemble models in both stages. A statement-slot-based symbolic operation module is also used in our system to further improve the performance and stability of the system. Our model achieves second place in the 3-way classification and fourth place in the 2-way classification evaluation. Several ablation experiments show the effectiveness of different modules proposed in this paper.

pdf bib
Enhancing Descriptive Image Captioning with Natural Language Inference
Zhan Shi | Hui Liu | Xiaodan Zhu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Generating descriptive sentences that convey non-trivial, detailed, and salient information about images is an important goal of image captioning. In this paper we propose a novel approach to encourage captioning models to produce more detailed captions using natural language inference, based on the motivation that, among different captions of an image, descriptive captions are more likely to entail less descriptive captions. Specifically, we construct directed inference graphs for reference captions based on natural language inference. A PageRank algorithm is then employed to estimate the descriptiveness score of each node. Built on that, we use reference sampling and weighted designated rewards to guide captioning to generate descriptive captions. The results on MSCOCO show that the proposed method outperforms the baselines significantly on a wide range of conventional and descriptiveness-related evaluation metrics.

pdf bib
Preview, Attend and Review: Schema-Aware Curriculum Learning for Multi-Domain Dialogue State Tracking
Yinpei Dai | Hangyu Li | Yongbin Li | Jian Sun | Fei Huang | Luo Si | Xiaodan Zhu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Existing dialog state tracking (DST) models are trained with dialog data in a random order, neglecting rich structural information in a dataset. In this paper, we propose to use curriculum learning (CL) to better leverage both the curriculum structure and schema structure for task-oriented dialogs. Specifically, we propose a model-agnostic framework called Schema-aware Curriculum Learning for Dialog State Tracking (SaCLog), which consists of a preview module that pre-trains a DST model with schema information, a curriculum module that optimizes the model with CL, and a review module that augments mispredicted data to reinforce the CL training. We show that our proposed approach improves DST performance over both a transformer-based and RNN-based DST model (TripPy and TRADE) and achieves new state-of-the-art results on WOZ2.0 and MultiWOZ2.1.

pdf bib
Improving Pretrained Models for Zero-shot Multi-label Text Classification through Reinforced Label Hierarchy Reasoning
Hui Liu | Danqing Zhang | Bing Yin | Xiaodan Zhu
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Exploiting label hierarchies has become a promising approach to tackling the zero-shot multi-label text classification (ZS-MTC) problem. Conventional methods aim to learn a matching model between text and labels, using a graph encoder to incorporate label hierarchies to obtain effective label representations (Rios and Kavuluru, 2018). More recently, pretrained models like BERT (Devlin et al., 2018) have been used to convert classification tasks into a textual entailment task (Yin et al., 2019). This approach is naturally suitable for the ZS-MTC task. However, pretrained models are underexplored in the existing work because they do not generate individual vector representations for text or labels, making it unintuitive to combine them with conventional graph encoding methods. In this paper, we explore to improve pretrained models with label hierarchies on the ZS-MTC task. We propose a Reinforced Label Hierarchy Reasoning (RLHR) approach to encourage interdependence among labels in the hierarchies during training. Meanwhile, to overcome the weakness of flat predictions, we design a rollback algorithm that can remove logical errors from predictions during inference. Experimental results on three real-life datasets show that our approach achieves better performance and outperforms previous non-pretrained methods on the ZS-MTC task.

pdf bib
Exploring Decomposition for Table-based Fact Verification
Xiaoyu Yang | Xiaodan Zhu
Findings of the Association for Computational Linguistics: EMNLP 2021

Fact verification based on structured data is challenging as it requires models to understand both natural language and symbolic operations performed over tables. Although pre-trained language models have demonstrated a strong capability in verifying simple statements, they struggle with complex statements that involve multiple operations. In this paper, we improve fact verification by decomposing complex statements into simpler subproblems. Leveraging the programs synthesized by a weakly supervised semantic parser, we propose a program-guided approach to constructing a pseudo dataset for decomposition model training. The subproblems, together with their predicted answers, serve as the intermediate evidence to enhance our fact verification model. Experiments show that our proposed approach achieves the new state-of-the-art performance, an 82.7% accuracy, on the TabFact benchmark.

pdf bib
Retrieval, Analogy, and Composition: A framework for Compositional Generalization in Image Captioning
Zhan Shi | Hui Liu | Martin Renqiang Min | Christopher Malon | Li Erran Li | Xiaodan Zhu
Findings of the Association for Computational Linguistics: EMNLP 2021

Image captioning systems are expected to have the ability to combine individual concepts when describing scenes with concept combinations that are not observed during training. In spite of significant progress in image captioning with the help of the autoregressive generation framework, current approaches fail to generalize well to novel concept combinations. We propose a new framework that revolves around probing several similar image caption training instances (retrieval), performing analogical reasoning over relevant entities in retrieved prototypes (analogy), and enhancing the generation process with reasoning outcomes (composition). Our method augments the generation model by referring to the neighboring instances in the training set to produce novel concept combinations in generated captions. We perform experiments on the widely used image captioning benchmarks. The proposed models achieve substantial improvement over the compared baselines on both composition-related evaluation metrics and conventional image captioning metrics.

pdf bib
Detecting Speaker Personas from Conversational Texts
Jia-Chen Gu | Zhenhua Ling | Yu Wu | Quan Liu | Zhigang Chen | Xiaodan Zhu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Personas are useful for dialogue response prediction. However, the personas used in current studies are pre-defined and hard to obtain before a conversation. To tackle this issue, we study a new task, named Speaker Persona Detection (SPD), which aims to detect speaker personas based on the plain conversational text. In this task, a best-matched persona is searched out from candidates given the conversational text. This is a many-to-many semantic matching task because both contexts and personas in SPD are composed of multiple sentences. The long-term dependency and the dynamic redundancy among these sentences increase the difficulty of this task. We build a dataset for SPD, dubbed as Persona Match on Persona-Chat (PMPC). Furthermore, we evaluate several baseline models and propose utterance-to-profile (U2P) matching networks for this task. The U2P models operate at a fine granularity which treat both contexts and personas as sets of multiple sequences. Then, each sequence pair is scored and an interpretable overall score is obtained for a context-persona pair through aggregation. Evaluation results show that the U2P models outperform their baseline counterparts significantly.

pdf bib
Unsupervised Conversation Disentanglement through Co-Training
Hui Liu | Zhan Shi | Xiaodan Zhu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Conversation disentanglement aims to separate intermingled messages into detached sessions, which is a fundamental task in understanding multi-party conversations. Existing work on conversation disentanglement relies heavily upon human-annotated datasets, which is expensive to obtain in practice. In this work, we explore training a conversation disentanglement model without referencing any human annotations. Our method is built upon the deep co-training algorithm, which consists of two neural networks: a message-pair classifier and a session classifier. The former is responsible of retrieving local relations between two messages while the latter categorizes a message to a session by capturing context-aware information. Both the two networks are initialized respectively with pseudo data built from the unannotated corpus. During the deep co-training process, we use the session classifier as a reinforcement learning component to learn a session assigning policy by maximizing the local rewards given by the message-pair classifier. For the message-pair classifier, we enrich its training data by retrieving message pairs with high confidence from the disentangled sessions predicted by the session classifier. Experimental results on the large Movie Dialogue Dataset demonstrate that our proposed approach achieves competitive performance compared to previous supervised methods. Further experiments show that the predicted disentangled conversations can promote the performance on the downstream task of multi-party response selection.

pdf bib
WinoLogic: A Zero-Shot Logic-based Diagnostic Dataset for Winograd Schema Challenge
Weinan He | Canming Huang | Yongmei Liu | Xiaodan Zhu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

The recent success of neural language models (NLMs) on the Winograd Schema Challenge has called for further investigation of the commonsense reasoning ability of these models. Previous diagnostic datasets rely on crowd-sourcing which fails to provide coherent commonsense crucial for solving WSC problems. To better evaluate NLMs, we propose a logic-based framework that focuses on high-quality commonsense knowledge. Specifically, we identify and collect formal knowledge formulas verified by theorem provers and translate such formulas into natural language sentences. Based on these true knowledge sentences, adversarial false ones are generated. We propose a new dataset named WinoLogic with these sentences. Given a problem in WinoLogic, NLMs need to decide whether the plausible knowledge sentences could correctly solve the corresponding WSC problems in a zero-shot setting. We also ask human annotators to validate WinoLogic to ensure it is human-agreeable. Experiments show that NLMs still struggle to comprehend commonsense knowledge as humans do, indicating that their reasoning ability could have been overestimated.

pdf bib
Emotion Inference in Multi-Turn Conversations with Addressee-Aware Module and Ensemble Strategy
Dayu Li | Xiaodan Zhu | Yang Li | Suge Wang | Deyu Li | Jian Liao | Jianxing Zheng
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Emotion inference in multi-turn conversations aims to predict the participant’s emotion in the next upcoming turn without knowing the participant’s response yet, and is a necessary step for applications such as dialogue planning. However, it is a severe challenge to perceive and reason about the future feelings of participants, due to the lack of utterance information from the future. Moreover, it is crucial for emotion inference to capture the characteristics of emotional propagation in conversations, such as persistence and contagiousness. In this study, we focus on investigating the task of emotion inference in multi-turn conversations by modeling the propagation of emotional states among participants in the conversation history, and propose an addressee-aware module to automatically learn whether the participant keeps the historical emotional state or is affected by others in the next upcoming turn. In addition, we propose an ensemble strategy to further enhance the model performance. Empirical studies on three different benchmark conversation datasets demonstrate the effectiveness of the proposed model over several strong baselines.

2020

pdf bib
Exploring End-to-End Differentiable Natural Logic Modeling
Yufei Feng | Zi’ou Zheng | Quan Liu | Michael Greenspan | Xiaodan Zhu
Proceedings of the 28th International Conference on Computational Linguistics

We explore end-to-end trained differentiable models that integrate natural logic with neural networks, aiming to keep the backbone of natural language reasoning based on the natural logic formalism while introducing subsymbolic vector representations and neural components. The proposed model adapts module networks to model natural logic operations, which is enhanced with a memory component to model contextual information. Experiments show that the proposed framework can effectively model monotonicity-based reasoning, compared to the baseline neural network models without built-in inductive bias for monotonicity-based reasoning. Our proposed model shows to be robust when transferred from upward to downward inference. We perform further analyses on the performance of the proposed model on aggregation, showing the effectiveness of the proposed subcomponents on helping achieve better intermediate aggregation performance.

pdf bib
Proceedings of the Fourteenth Workshop on Semantic Evaluation
Aurelie Herbelot | Xiaodan Zhu | Alexis Palmer | Nathan Schneider | Jonathan May | Ekaterina Shutova
Proceedings of the Fourteenth Workshop on Semantic Evaluation

pdf bib
SemEval-2020 Task 4: Commonsense Validation and Explanation
Cunxiang Wang | Shuailong Liang | Yili Jin | Yilong Wang | Xiaodan Zhu | Yue Zhang
Proceedings of the Fourteenth Workshop on Semantic Evaluation

In this paper, we present SemEval-2020 Task 4, Commonsense Validation and Explanation (ComVE), which includes three subtasks, aiming to evaluate whether a system can distinguish a natural language statement that makes sense to humans from one that does not, and provide the reasons. Specifically, in our first subtask, the participating systems are required to choose from two natural language statements of similar wording the one that makes sense and the one does not. The second subtask additionally asks a system to select the key reason from three options why a given statement does not make sense. In the third subtask, a participating system needs to generate the reason automatically. 39 teams submitted their valid systems to at least one subtask. For Subtask A and Subtask B, top-performing teams have achieved results closed to human performance. However, for Subtask C, there is still a considerable gap between system and human performance. The dataset used in our task can be found at https://github.com/wangcunxiang/SemEval2020-Task4-Commonsense-Validation-and-Explanation.

pdf bib
SemEval-2020 Task 5: Counterfactual Recognition
Xiaoyu Yang | Stephen Obadinma | Huasha Zhao | Qiong Zhang | Stan Matwin | Xiaodan Zhu
Proceedings of the Fourteenth Workshop on Semantic Evaluation

We present a counterfactual recognition (CR) task, the shared Task 5 of SemEval-2020. Counterfactuals describe potential outcomes (consequents) produced by actions or circumstances that did not happen or cannot happen and are counter to the facts (antecedent). Counterfactual thinking is an important characteristic of the human cognitive system; it connects antecedents and consequent with causal relations. Our task provides a benchmark for counterfactual recognition in natural language with two subtasks. Subtask-1 aims to determine whether a given sentence is a counterfactual statement or not. Subtask-2 requires the participating systems to extract the antecedent and consequent in a given counterfactual statement. During the SemEval-2020 official evaluation period, we received 27 submissions to Subtask-1 and 11 to Subtask-2. Our data and baseline code are made publicly available at https://zenodo.org/record/3932442. The task website and leaderboard can be found at https://competitions.codalab.org/competitions/21691.

pdf bib
Learning Low-Resource End-To-End Goal-Oriented Dialog for Fast and Reliable System Deployment
Yinpei Dai | Hangyu Li | Chengguang Tang | Yongbin Li | Jian Sun | Xiaodan Zhu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Existing end-to-end dialog systems perform less effectively when data is scarce. To obtain an acceptable success in real-life online services with only a handful of training examples, both fast adaptability and reliable performance are highly desirable for dialog systems. In this paper, we propose the Meta-Dialog System (MDS), which combines the advantages of both meta-learning approaches and human-machine collaboration. We evaluate our methods on a new extended-bAbI dataset and a transformed MultiWOZ dataset for low-resource goal-oriented dialog learning. Experimental results show that MDS significantly outperforms non-meta-learning baselines and can achieve more than 90% per-turn accuracies with only 10 dialogs on the extended-bAbI dataset.

pdf bib
Dynamic Memory Induction Networks for Few-Shot Text Classification
Ruiying Geng | Binhua Li | Yongbin Li | Jian Sun | Xiaodan Zhu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

This paper proposes Dynamic Memory Induction Networks (DMIN) for few-short text classification. The model develops a dynamic routing mechanism over static memory, enabling it to better adapt to unseen classes, a critical capability for few-short classification. The model also expands the induction process with supervised learning weights and query information to enhance the generalization ability of meta-learning. The proposed model brings forward the state-of-the-art performance significantly by 2 4% improvement on the miniRCV1 and ODIC datasets. Detailed analysis is further performed to show how the proposed network achieves the new performance.

pdf bib
Improving Image Captioning with Better Use of Caption
Zhan Shi | Xu Zhou | Xipeng Qiu | Xiaodan Zhu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Image captioning is a multimodal problem that has drawn extensive attention in both the natural language processing and computer vision community. In this paper, we present a novel image captioning architecture to better explore semantics available in captions and leverage that to enhance both image representation and caption generation. Our models first construct caption-guided visual relationship graphs that introduce beneficial inductive bias using weakly supervised multi-instance learning. The representation is then enhanced with neighbouring and contextual nodes with their textual and visual features. During generation, the model further incorporates visual relationships using multi-task learning for jointly predicting word and object/predicate tag sequences. We perform extensive experiments on the MSCOCO dataset, showing that the proposed framework significantly outperforms the baselines, resulting in the state-of-the-art performance under a wide range of evaluation metrics. The code of our paper has been made publicly available.

pdf bib
Filtering before Iteratively Referring for Knowledge-Grounded Response Selection in Retrieval-Based Chatbots
Jia-Chen Gu | Zhenhua Ling | Quan Liu | Zhigang Chen | Xiaodan Zhu
Findings of the Association for Computational Linguistics: EMNLP 2020

The challenges of building knowledge-grounded retrieval-based chatbots lie in how to ground a conversation on its background knowledge and how to match response candidates with both context and knowledge simultaneously. This paper proposes a method named Filtering before Iteratively REferring (FIRE) for this task. In this method, a context filter and a knowledge filter are first built, which derive knowledge-aware context representations and context-aware knowledge representations respectively by global and bidirectional attention. Besides, the entries irrelevant to the conversation are discarded by the knowledge filter. After that, iteratively referring is performed between context and response representations as well as between knowledge and response representations, in order to collect deep matching features for scoring response candidates. Experimental results show that FIRE outperforms previous methods by margins larger than 2.8% and 4.1% on the PERSONA-CHAT dataset with original and revised personas respectively, and margins larger than 3.1% on the CMU_DoG dataset in terms of top-1 accuracy. We also show that FIRE is more interpretable by visualizing the knowledge grounding process.

pdf bib
Program Enhanced Fact Verification with Verbalization and Graph Attention Network
Xiaoyu Yang | Feng Nie | Yufei Feng | Quan Liu | Zhigang Chen | Xiaodan Zhu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Performing fact verification based on structured data is important for many real-life applications and is a challenging research problem, particularly when it involves both symbolic operations and informal inference based on language understanding. In this paper, we present a Program-enhanced Verbalization and Graph Attention Network (ProgVGAT) to integrate programs and execution into textual inference models. Specifically, a verbalization with program execution model is proposed to accumulate evidences that are embedded in operations over the tables. Built on that, we construct the graph attention verification networks, which are designed to fuse different sources of evidences from verbalized program execution, program structures, and the original statements and tables, to make the final verification decision. To support the above framework, we propose a program selection module optimized with a new training strategy based on margin loss, to produce more accurate programs, which is shown to be effective in enhancing the final verification results. Experimental results show that the proposed framework achieves the new state-of-the-art performance, a 74.4% accuracy, on the benchmark dataset TABFACT.

2019

pdf bib
Proceedings of the 13th International Workshop on Semantic Evaluation
Jonathan May | Ekaterina Shutova | Aurelie Herbelot | Xiaodan Zhu | Marianna Apidianaki | Saif M. Mohammad
Proceedings of the 13th International Workshop on Semantic Evaluation

pdf bib
Deep Learning for Natural Language Inference
Samuel Bowman | Xiaodan Zhu
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Tutorials

This tutorial discusses cutting-edge research on NLI, including recent advance on dataset development, cutting-edge deep learning models, and highlights from recent research on using NLI to understand capabilities and limits of deep learning models for language understanding and reasoning.

pdf bib
Dually Interactive Matching Network for Personalized Response Selection in Retrieval-Based Chatbots
Jia-Chen Gu | Zhen-Hua Ling | Xiaodan Zhu | Quan Liu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

This paper proposes a dually interactive matching network (DIM) for presenting the personalities of dialogue agents in retrieval-based chatbots. This model develops from the interactive matching network (IMN) which models the matching degree between a context composed of multiple utterances and a response candidate. Compared with previous persona fusion approach which enhances the representation of a context by calculating its similarity with a given persona, the DIM model adopts a dual matching architecture, which performs interactive matching between responses and contexts and between responses and personas respectively for ranking response candidates. Experimental results on PERSONA-CHAT dataset show that the DIM model outperforms its baseline model, i.e., IMN with persona fusion, by a margin of 14.5% and outperforms the present state-of-the-art model by a margin of 27.7% in terms of top-1 accuracy hits@1.

pdf bib
Induction Networks for Few-Shot Text Classification
Ruiying Geng | Binhua Li | Yongbin Li | Xiaodan Zhu | Ping Jian | Jian Sun
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Text classification tends to struggle when data is deficient or when it needs to adapt to unseen classes. In such challenging scenarios, recent studies have used meta-learning to simulate the few-shot task, in which new queries are compared to a small support set at the sample-wise level. However, this sample-wise comparison may be severely disturbed by the various expressions in the same class. Therefore, we should be able to learn a general representation of each class in the support set and then compare it to new queries. In this paper, we propose a novel Induction Network to learn such a generalized class-wise representation, by innovatively leveraging the dynamic routing algorithm in meta-learning. In this way, we find the model is able to induce and generalize better. We evaluate the proposed model on a well-studied sentiment classification dataset (English) and a real-world dialogue intent classification dataset (Chinese). Experiment results show that on both datasets, the proposed model significantly outperforms the existing state-of-the-art approaches, proving the effectiveness of class-wise generalization in few-shot text classification.

2018

pdf bib
Neural Natural Language Inference Models Enhanced with External Knowledge
Qian Chen | Xiaodan Zhu | Zhen-Hua Ling | Diana Inkpen | Si Wei
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Modeling natural language inference is a very challenging task. With the availability of large annotated data, it has recently become feasible to train complex models such as neural-network-based inference models, which have shown to achieve the state-of-the-art performance. Although there exist relatively large annotated data, can machines learn all knowledge needed to perform natural language inference (NLI) from these data? If not, how can neural-network-based NLI models benefit from external knowledge and how to build NLI models to leverage it? In this paper, we enrich the state-of-the-art neural natural language inference models with external knowledge. We demonstrate that the proposed models improve neural NLI models to achieve the state-of-the-art performance on the SNLI and MultiNLI datasets.

pdf bib
Enhancing Sentence Embedding with Generalized Pooling
Qian Chen | Zhen-Hua Ling | Xiaodan Zhu
Proceedings of the 27th International Conference on Computational Linguistics

Pooling is an essential component of a wide variety of sentence representation and embedding models. This paper explores generalized pooling methods to enhance sentence embedding. We propose vector-based multi-head attention that includes the widely used max pooling, mean pooling, and scalar self-attention as special cases. The model benefits from properly designed penalization terms to reduce redundancy in multi-head attention. We evaluate the proposed model on three different tasks: natural language inference (NLI), author profiling, and sentiment classification. The experiments show that the proposed model achieves significant improvement over strong sentence-encoding-based methods, resulting in state-of-the-art performances on four datasets. The proposed approach can be easily implemented for more problems than we discuss in this paper.

2017

pdf bib
A Dataset for Multi-Target Stance Detection
Parinaz Sobhani | Diana Inkpen | Xiaodan Zhu
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers

Current models for stance classification often treat each target independently, but in many applications, there exist natural dependencies among targets, e.g., stance towards two or more politicians in an election or towards several brands of the same product. In this paper, we focus on the problem of multi-target stance detection. We present a new dataset that we built for this task. Furthermore, We experiment with several neural models on the dataset and show that they are more effective in jointly modeling the overall position towards two related targets compared to independent predictions and other models of joint learning, such as cascading classification. We make the new dataset publicly available, in order to facilitate further research in multi-target stance classification.

pdf bib
Recurrent Neural Network-Based Sentence Encoder with Gated Attention for Natural Language Inference
Qian Chen | Xiaodan Zhu | Zhen-Hua Ling | Si Wei | Hui Jiang | Diana Inkpen
Proceedings of the 2nd Workshop on Evaluating Vector Space Representations for NLP

The RepEval 2017 Shared Task aims to evaluate natural language understanding models for sentence representation, in which a sentence is represented as a fixed-length vector with neural networks and the quality of the representation is tested with a natural language inference task. This paper describes our system (alpha) that is ranked among the top in the Shared Task, on both the in-domain test set (obtaining a 74.9% accuracy) and on the cross-domain test set (also attaining a 74.9% accuracy), demonstrating that the model generalizes well to the cross-domain data. Our model is equipped with intra-sentence gated-attention composition which helps achieve a better performance. In addition to submitting our model to the Shared Task, we have also tested it on the Stanford Natural Language Inference (SNLI) dataset. We obtain an accuracy of 85.5%, which is the best reported result on SNLI when cross-sentence attention is not allowed, the same condition enforced in RepEval 2017.

pdf bib
Enhanced LSTM for Natural Language Inference
Qian Chen | Xiaodan Zhu | Zhen-Hua Ling | Si Wei | Hui Jiang | Diana Inkpen
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Reasoning and inference are central to human and artificial intelligence. Modeling inference in human language is very challenging. With the availability of large annotated data (Bowman et al., 2015), it has recently become feasible to train neural network based inference models, which have shown to be very effective. In this paper, we present a new state-of-the-art result, achieving the accuracy of 88.6% on the Stanford Natural Language Inference Dataset. Unlike the previous top models that use very complicated network architectures, we first demonstrate that carefully designing sequential inference models based on chain LSTMs can outperform all previous models. Based on this, we further show that by explicitly considering recursive architectures in both local inference modeling and inference composition, we achieve additional improvement. Particularly, incorporating syntactic parsing information contributes to our best result—it further improves the performance even when added to the already very strong model.

pdf bib
Deep Learning for Semantic Composition
Xiaodan Zhu | Edward Grefenstette
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts

Learning representation to model the meaning of text has been a core problem in NLP. The last several years have seen extensive interests on distributional approaches, in which text spans of different granularities are encoded as vectors of numerical values. If properly learned, such representation has showed to achieve the state-of-the-art performance on a wide range of NLP problems.In this tutorial, we will cover the fundamentals and the state-of-the-art research on neural network-based modeling for semantic composition, which aims to learn distributed representation for different granularities of text, e.g., phrases, sentences, or even documents, from their sub-component meaning representation, e.g., word embedding.

2016

pdf bib
SemEval-2016 Task 6: Detecting Stance in Tweets
Saif Mohammad | Svetlana Kiritchenko | Parinaz Sobhani | Xiaodan Zhu | Colin Cherry
Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016)

pdf bib
DAG-Structured Long Short-Term Memory for Semantic Compositionality
Xiaodan Zhu | Parinaz Sobhani | Hongyu Guo
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

pdf bib
A Dataset for Detecting Stance in Tweets
Saif Mohammad | Svetlana Kiritchenko | Parinaz Sobhani | Xiaodan Zhu | Colin Cherry
Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)

We can often detect from a person’s utterances whether he/she is in favor of or against a given target entity (a product, topic, another person, etc.). Here for the first time we present a dataset of tweets annotated for whether the tweeter is in favor of or against pre-chosen targets of interest―their stance. The targets of interest may or may not be referred to in the tweets, and they may or may not be the target of opinion in the tweets. The data pertains to six targets of interest commonly known and debated in the United States. Apart from stance, the tweets are also annotated for whether the target of interest is the target of opinion in the tweet. The annotations were performed by crowdsourcing. Several techniques were employed to encourage high-quality annotations (for example, providing clear and simple instructions) and to identify and discard poor annotations (for example, using a small set of check questions annotated by the authors). This Stance Dataset, which was subsequently also annotated for sentiment, can be used to better understand the relationship between stance, sentiment, entity relationships, and textual inference.

pdf bib
Extracting Discriminative Keyphrases with Learned Semantic Hierarchies
Yunli Wang | Yong Jin | Xiaodan Zhu | Cyril Goutte
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

The goal of keyphrase extraction is to automatically identify the most salient phrases from documents. The technique has a wide range of applications such as rendering a quick glimpse of a document, or extracting key content for further use. While previous work often assumes keyphrases are a static property of a given documents, in many applications, the appropriate set of keyphrases that should be extracted depends on the set of documents that are being considered together. In particular, good keyphrases should not only accurately describe the content of a document, but also reveal what discriminates it from the other documents. In this paper, we study this problem of extracting discriminative keyphrases. In particularly, we propose to use the hierarchical semantic structure between candidate keyphrases to promote keyphrases that have the right level of specificity to clearly distinguish the target document from others. We show that such knowledge can be used to construct better discriminative keyphrase extraction systems that do not assume a static, fixed set of keyphrases for a document. We show how this helps identify key expertise of authors from their papers, as well as competencies covered by online courses within different domains.

2015

pdf bib
Neural Networks for Integrating Compositional and Non-compositional Sentiment in Sentiment Composition
Xiaodan Zhu | Hongyu Guo | Parinaz Sobhani
Proceedings of the Fourth Joint Conference on Lexical and Computational Semantics

pdf bib
Revisiting Word Embedding for Contrasting Meaning
Zhigang Chen | Wei Lin | Qian Chen | Xiaoping Chen | Si Wei | Hui Jiang | Xiaodan Zhu
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

2014

pdf bib
NRC-Canada-2014: Detecting Aspects and Sentiment in Customer Reviews
Svetlana Kiritchenko | Xiaodan Zhu | Colin Cherry | Saif Mohammad
Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014)

pdf bib
NRC-Canada-2014: Recent Improvements in the Sentiment Analysis of Tweets
Xiaodan Zhu | Svetlana Kiritchenko | Saif Mohammad
Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014)

pdf bib
Semantic Role Labeling of Emotions in Tweets
Saif Mohammad | Xiaodan Zhu | Joel Martin
Proceedings of the 5th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis

bib
Sentiment Analysis of Social Media Texts
Saif M. Mohammad | Xiaodan Zhu
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing: Tutorial Abstracts

Automatically detecting sentiment of product reviews, blogs, tweets, and SMS messages has attracted extensive interest from both the academia and industry. It has a number of applications, including: tracking sentiment towards products, movies, politicians, etc.; improving customer relation models; detecting happiness and well-being; and improving automatic dialogue systems. In this tutorial, we will describe how you can create a state-of-the-art sentiment analysis system, with a focus on social media posts.We begin with an introduction to sentiment analysis and its various forms: term level, message level, document level, and aspect level. We will describe how sentiment analysis systems are evaluated, especially through recent SemEval shared tasks: Sentiment Analysis of Twitter (SemEval-2013 Task 2, SemEval 2014-Task 9) and Aspect Based Sentiment Analysis (SemEval-2014 Task 4).We will give an overview of the best sentiment analysis systems at this point of time, including those that are conventional statistical systems as well as those using deep learning approaches. We will describe in detail the NRC-Canada systems, which were the overall best performing systems in all three SemEval competitions listed above. These are simple lexical- and sentiment-lexicon features based systems, which are relatively easy to re-implement.We will discuss features that had the most impact (those derived from sentiment lexicons and negation handling). We will present how large tweet-specific sentiment lexicons can be automatically generated and evaluated. We will also show how negation impacts sentiment differently depending on whether the scope of the negation is positive or negative. Finally, we will flesh out limitations of current approaches and promising future directions.

pdf bib
An Empirical Study on the Effect of Negation Words on Sentiment
Xiaodan Zhu | Hongyu Guo | Saif Mohammad | Svetlana Kiritchenko
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
Bilingual Sentiment Consistency for Statistical Machine Translation
Boxing Chen | Xiaodan Zhu
Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics

2013

pdf bib
NRC-Canada: Building the State-of-the-Art in Sentiment Analysis of Tweets
Saif Mohammad | Svetlana Kiritchenko | Xiaodan Zhu
Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013)

2012

pdf bib
Ecological Validity and the Evaluation of Speech Summarization Quality
Anthony McCallum | Cosmin Munteanu | Gerald Penn | Xiaodan Zhu
Proceedings of Workshop on Evaluation Metrics and System Comparison for Automatic Summarization

2011

pdf bib
A Normalized-Cut Alignment Model for Mapping Hierarchical Semantic Structures onto Spoken Documents
Xiaodan Zhu
Proceedings of the Fifteenth Conference on Computational Natural Language Learning

pdf bib
Indexing Spoken Documents with Hierarchical Semantic Structures: Semantic Tree-to-string Alignment Models
Xiaodan Zhu | Colin Cherry | Gerald Penn
Proceedings of 5th International Joint Conference on Natural Language Processing

2010

pdf bib
Imposing Hierarchical Browsing Structures onto Spoken Documents
Xiaodan Zhu | Colin Cherry | Gerald Penn
Coling 2010: Posters

2009

pdf bib
Summarizing multiple spoken documents: finding evidence from untranscribed audio
Xiaodan Zhu | Gerald Penn | Frank Rudzicz
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP

pdf bib
Improving Automatic Speech Recognition for Lectures through Transformation-based Rules Learned from Minimal Data
Cosmin Munteanu | Gerald Penn | Xiaodan Zhu
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP

2008

pdf bib
Prior Derivation Models For Formally Syntax-Based Translation Using Linguistically Syntactic Parsing and Tree Kernels
Bowen Zhou | Bing Xiang | Xiaodan Zhu | Yuqing Gao
Proceedings of the ACL-08: HLT Second Workshop on Syntax and Structure in Statistical Translation (SSST-2)

pdf bib
A Critical Reassessment of Evaluation Baselines for Speech Summarization
Gerald Penn | Xiaodan Zhu
Proceedings of ACL-08: HLT

2006

pdf bib
Comparing the roles of textual, acoustic and spoken-language features on spontaneous-conversation summarization
Xiaodan Zhu | Gerald Penn
Proceedings of the Human Language Technology Conference of the NAACL, Companion Volume: Short Papers

2003

pdf bib
Single Character Chinese Named Entity Recognition
Xiaodan Zhu | Mu Li | Jianfeng Gao | Chang-Ning Huang
Proceedings of the Second SIGHAN Workshop on Chinese Language Processing

2000

pdf bib
An Algorithm for Situation Classification of Chinese Verbs
Xiaodan Zhu | Chunfa Yuan | K.F. Wong | Wenjie Li
Second Chinese Language Processing Workshop

Search
Co-authors