Although pre-trained language models (PLMs) have been widely used in natural language understandings (NLU), they are still exposed to fairness issues. Most existing extrinsic debiasing methods rely on manually curated word lists for each sensitive groups to modify training data or to add regular constraints. However, these word lists are often limited by length and scope, resulting in the degradation performance of extrinsic bias mitigation. To address the aforementioned issues, we propose a **C**ontinuous **P**rompts **A**djustment **D**ebiasing method (CPAD), which generates continuous token lists from the entire vocabulary space and uses them to bridge the gap between outputs and targets in fairness learning process. Specifically, CPAD encapsulates fine-tuning objective and debiasing objectives into several independent prompts. To avoid the limitation of manual word lists, in fairness learning phase, we extract outputs from the entire vocabulary space via fine-tuned PLM. Then, we aggregate the outputs from the same sensitive group as continuous token lists to map the outputs into protected attribute labels. Finally, after we learn the debiasing prompts in the perspective of adversarial learning, we improve fairness by adjusting continuous prompts at model inference time. Through extensive experiments on three NLU tasks, we evaluate the debiasing performance from the perspectives of group fairness and fairness through unawareness. The experimental results show that CPAD outperforms all baselines in term of single and two-attributes debiasing performance.
Human-like social bias of pre-trained language models (PLMs) on downstream tasks have attracted increasing attention. The potential flaws in the training data are the main factor that causes unfairness in PLMs. Existing data-centric debiasing strategies mainly leverage explicit bias words (defined as sensitive attribute words specific to demographic groups) for counterfactual data augmentation to balance the training data. However, they lack consideration of implicit bias words potentially associated with explicit bias words in complex distribution data, which indirectly harms the fairness of PLMs. To this end, we propose a **Data**-Centric **Debias**ing method (named Data-Debias), which uses an explainability method to search for implicit bias words to assist in debiasing PLMs. Specifically, we compute the feature attributions of all tokens using the Integrated Gradients method, and then treat the tokens that have a large impact on the model’s decision as implicit bias words. To make the search results more precise, we iteratively train a biased model to amplify the bias with each iteration. Finally, we use the implicit bias words searched in the last iteration to assist in debiasing PLMs. Extensive experimental results on multiple PLMs debiasing on three different classification tasks demonstrate that Data-Debias achieves state-of-the-art debiasing performance and strong generalization while maintaining predictive abilities.
In our work, we explore the synergistic capabilities of pre-trained vision-and-language models (VLMs) and large language models (LLMs) on visual commonsense reasoning (VCR) problems. We find that VLMs and LLMs-based decision pipelines are good at different kinds of VCR problems. Pre-trained VLMs exhibit strong performance for problems involving understanding the literal visual content, which we noted as visual commonsense understanding (VCU). For problems where the goal is to infer conclusions beyond image content, which we noted as visual commonsense inference (VCI), VLMs face difficulties, while LLMs, given sufficient visual evidence, can use commonsense to infer the answer well. We empirically validate this by letting LLMs classify VCR problems into these two categories and show the significant difference between VLM and LLM with image caption decision pipelines on two subproblems. Moreover, we identify a challenge with VLMs’ passive perception, which may miss crucial context information, leading to incorrect reasoning by LLMs. Based on these, we suggest a collaborative approach, named ViCor, where pre-trained LLMs serve as problem classifiers to analyze the problem category, then either use VLMs to answer the question directly or actively instruct VLMs to concentrate on and gather relevant visual elements to support potential commonsense inferences. We evaluate our framework on two VCR benchmark datasets and outperform all other methods without in-domain fine-tuning.
Multi-label text classification (MLTC) is an important task in the field of natural language processing. Most existing models rely on high-quality text representations provided by pre-trained language models (PLMs). They hence face the challenge of input length limitation caused by PLMs, when dealing with long texts. In light of this, we introduce a comprehensive approach to multi-label long text classification. We propose a text segmentation algorithm, which guarantees to produce the optimal segmentation, to address the issue of input length limitation caused by PLMs. We incorporate external knowledge, labels’ co-occurrence relations, and attention mechanisms in representation learning to enhance both text and label representations. Our method’s effectiveness is validated through extensive experiments on various MLTC datasets, unraveling the intricate correlations between texts and labels.
During pre-training, the Text-to-Image (T2I) diffusion models encode factual knowledge into their parameters. These parameterized facts enable realistic image generation, but they may become obsolete over time, thereby misrepresenting the current state of the world. Knowledge editing techniques aim to update model knowledge in a targeted way. However, facing the dual challenges posed by inadequate editing datasets and unreliable evaluation criterion, the development of T2I knowledge editing encounter difficulties in effectively generalizing injected knowledge. In this work, we design a T2I knowledge editing framework by comprehensively spanning on three phases: First, we curate a dataset CAKE, comprising paraphrase and multi-object test, to enable more fine-grained assessment on knowledge generalization. Second, we propose a novel criterion, adaptive CLIP threshold, to effectively filter out false successful images under the current criterion and achieve reliable editing evaluation. Finally, we introduce MPE, a simple but effective approach for T2I knowledge editing. Instead of tuning parameters, MPE precisely recognizes and edits the outdated part of the conditioning text-prompt to accommodate the up-to-date knowledge. A straightforward implementation of MPE (Based on in-context learning) exhibits better overall performance than previous model editors. We hope these efforts can further promote faithful evaluation of T2I knowledge editing methods.
Federated embodied agent learning protects the data privacy of individual visual environments by keeping data locally at each client (the individual environment) during training. However, since the local data is inaccessible to the server under federated learning, attackers may easily poison the training data of the local client to build a backdoor in the agent without notice. Deploying such an agent raises the risk of potential harm to humans, as the attackers may easily navigate and control the agent as they wish via the backdoor. Towards Byzantine-robust federated embodied agent learning, in this paper, we study the attack and defense for the task of vision-and-language navigation (VLN), where the agent is required to follow natural language instructions to navigate indoor environments. First, we introduce a simple but effective attack strategy, Navigation as Wish (NAW), in which the malicious client manipulates local trajectory data to implant a backdoor into the global model. Results on two VLN datasets (R2R and RxR) show that NAW can easily navigate the deployed VLN agent regardless of the language instruction, without affecting its performance on normal test sets. Then, we propose a new Prompt-Based Aggregation (PBA) to defend against the NAW attack in federated VLN, which provides the server with a ”prompt” of the vision-and-language alignment variance between the benign and malicious clients so that they can be distinguished during training. We validate the effectiveness of the PBA method on protecting the global model from the NAW attack, which outperforms other state-of-the-art defense methods by a large margin in the defense metrics on R2R and RxR.
Contrastive Language-Image Pretraining (CLIP) has demonstrated great zero-shot performance for matching images and text. However, it is still challenging to adapt vision-language pretrained models like CLIP to compositional image and text matching — a more challenging image and text matching task requiring the model’s understanding of compositional word concepts and visual components. Towards better compositional generalization in zero-shot image and text matching, in this paper, we study the problem from a causal perspective: the erroneous semantics of individual entities are essentially confounders that cause the matching failure. Therefore, we propose a novel training-free compositional CLIP model (ComCLIP). ComCLIP disentangles input images into subjects, objects, and action subimages and composes CLIP’s vision encoder and text encoder to perform evolving matching over compositional text embedding and subimage embeddings. In this way, ComCLIP can mitigate spurious correlations introduced by the pretrained CLIP models and dynamically evaluate the importance of each component. Experiments on four compositional image-text matching datasets: Winoground, VL-checklist, SVO, and ComVG, and two general image-text retrieval datasets: Flick30K, and MSCOCO demonstrate the effectiveness of our plug-and-play method, which boosts the zero-shot inference ability of CLIP, SLIP, and BLIP2 even without further training or fine-tuning. Our codes can be found at https://github.com/eric-ai-lab/ComCLIP.
Discovering the semantics of multimodal utterances is essential for understanding human language and enhancing human-machine interactions. Existing methods manifest limitations in leveraging nonverbal information for discerning complex semantics in unsupervised scenarios. This paper introduces a novel unsupervised multimodal clustering method (UMC), making a pioneering contribution to this field. UMC introduces a unique approach to constructing augmentation views for multimodal data, which are then used to perform pre-training to establish well-initialized representations for subsequent clustering. An innovative strategy is proposed to dynamically select high-quality samples as guidance for representation learning, gauged by the density of each sample’s nearest neighbors. Besides, it is equipped to automatically determine the optimal value for the top-K parameter in each cluster to refine sample selection. Finally, both high- and low-quality samples are used to learn representations conducive to effective clustering. We build baselines on benchmark multimodal intent and dialogue act datasets. UMC shows remarkable improvements of 2-6% scores in clustering metrics over state-of-the-art methods, marking the first successful endeavor in this domain. The complete code and data are available at https://github.com/thuiar/UMC.
Multipanel images, commonly seen as web screenshots, posters, etc., pervade our daily lives. These images, characterized by their composition of multiple subfigures in distinct layouts, effectively convey information to people. Toward building advanced multimodal AI applications, such as agents that understand complex scenes and navigate through webpages, the skill of multipanel visual reasoning is essential, and a comprehensive evaluation of models in this regard is important. Therefore, we introduce Multipanel Visual Question Answering (MultipanelVQA), a novel benchmark comprising 6,600 triplets of questions, answers, and multipanel images that specifically challenge models in comprehending multipanel images. Our evaluation shows that questions in the MultipanelVQA benchmark pose significant challenges to the state-of-the-art Multimodal Large Language Models (MLLMs) tested, even though humans can attain approximately 99% accuracy on these questions. Distinctively, the MultipanelVQA benchmark features synthetically generated multipanel images specifically crafted to isolate and assess the impact of various factors, such as the layout, on MLLMs’ multipanel image comprehension abilities. As a result, in addition to benchmarking the capabilities of MLLMs in understanding multipanel images, we analyze various factors of the multipanel image that affect MLLMs’ performance with synthetic data and offer insights for enhancement.
Multi-hop question answering (MQA) is one of the challenging tasks to evaluate machine’s comprehension and reasoning abilities, where large language models (LLMs) have widely achieved the human-comparable performance. Due to the dynamics of knowledge facts in real world, knowledge editing has been explored to update model with the up-to-date facts while avoiding expensive re-training or fine-tuning. Starting from the edited fact, the updated model needs to provide cascading changes in the chain of MQA. The previous art simply adopts a mix-up prompt to instruct LLMs conducting multiple reasoning tasks sequentially, including question decomposition, answer generation, and conflict checking via comparing with edited facts. However, the coupling of these functionally-diverse reasoning tasks inhibits LLMs’ advantages in comprehending and answering questions while disturbing them with the unskilled task of conflict checking. We thus propose a framework, Programmable knowledge editing for Multi-hop Question Answering (PokeMQA), to decouple the jobs. Specifically, we prompt LLMs to decompose knowledge-augmented multi-hop question, while interacting with a detached trainable scope detector to modulate LLMs behavior depending on external conflict signal. The experiments on three LLM backbones and two benchmark datasets validate our superiority in knowledge editing of MQA, outperforming all competitors by a large margin in almost all settings and consistently producing reliable reasoning process.
As the representation capability of Pre-trained Language Models (PLMs) improve, there is growing concern that they will inherit social biases from unprocessed corpora. Most previous debiasing techniques used Counterfactual Data Augmentation (CDA) to balance the training corpus. However, CDA slightly modifies the original corpus, limiting the representation distance between different demographic groups to a narrow range. As a result, the debiasing model easily fits the differences between counterfactual pairs, which affects its debiasing performance with limited text resources. In this paper, we propose an adversarial training-inspired two-stage debiasing model using Contrastive learning with Continuous Prompt Augmentation (named CCPA) to mitigate social biases in PLMs’ encoding. In the first stage, we propose a data augmentation method based on continuous prompt tuning to push farther the representation distance between sample pairs along different demographic groups. In the second stage, we utilize contrastive learning to pull closer the representation distance between the augmented sample pairs and then fine-tune PLMs’ parameters to get debiased encoding. Our approach guides the model to achieve stronger debiasing performance by adding difficulty to the training process. Extensive experiments show that CCPA outperforms baselines in terms of debiasing performance. Meanwhile, experimental results on the GLUE benchmark show that CCPA retains the language modeling capability of PLMs.
Recent advances in text-to-image synthesis make it possible to visualize machine imaginations for a given context. On the other hand, when generating text, human writers are gifted at creative visualization, which enhances their writings by forming imaginations as blueprints before putting down the stories in words. Inspired by such a cognitive process, we ask the natural question of whether we can endow machines with the same ability to utilize visual information and construct a general picture of the context to guide text generation. In this work, we propose iNLG that uses machine-generated images to guide language models (LM) in open-ended text generation. The experiments and analyses demonstrate the effectiveness of iNLG on open-ended text generation tasks, including text completion, story generation, and concept-to-text generation in both few-shot and full-data scenarios. Both automatic metrics and human evaluations verify that the text snippets generated by our iNLG are coherent and informative while displaying minor degeneration.
Automatic evaluations for natural language generation (NLG) conventionally rely on token-level or embedding-level comparisons with text references. This differs from human language processing, for which visual imagination often improves comprehension. In this work, we propose ImaginE, an imagination-based automatic evaluation metric for natural language generation. With the help of StableDiffusion, a state-of-the-art text-to-image generator, we automatically generate an image as the embodied imagination for the text snippet and compute the imagination similarity using contextual embeddings. Experiments spanning several text generation tasks demonstrate that adding machine-generated images with our ImaginE displays great potential in introducing multi-modal information into NLG evaluation, and improves existing automatic metrics’ correlations with human similarity judgments in both reference-based and reference-free evaluation scenarios.
Large language models (LLMs) have led to a series of breakthroughs in natural language processing (NLP), partly owing to the massive amounts of world knowledge they memorize during pretraining. While many downstream applications provide the model with an informational context to aid its underlying task, how the model’s world knowledge interacts with the factual information presented in the context remains under explored. As a desirable behavior, an LLM should give precedence to the context whenever it contains task-relevant information that conflicts with the model’s memorized knowledge. This enables model predictions to be grounded in the context, which then facilitates updating specific model predictions without frequently retraining the model. By contrast, when the context is irrelevant to the task, the model should ignore it and fall back on its internal knowledge. In this paper, we undertake a first joint study of the aforementioned two properties, namely controllability and robustness, in the context of LLMs. We demonstrate that state-of-the-art T5 and PaLM models (both pretrained and finetuned) could exhibit low controllability and robustness that does not improve with increasing the model size. As a solution, we propose a simple yet effective method – knowledge aware finetuning (KAFT) – to strengthen both controllability and robustness by injecting counterfactual and irrelevant contexts to standard supervised datasets. Our comprehensive evaluation showcases the utility of KAFT across model architectures and sizes.
*Warning: This paper contains several contents that may be toxic, harmful, or offensive.*In the last few years, text-to-image generative models have gained remarkable success in generating images with unprecedented quality accompanied by a breakthrough of inference speed. Despite their rapid progress, human biases that manifest in the training examples, particularly with regard to common stereotypical biases, like gender and skin tone, still have been found in these generative models. In this work, we seek to measure more complex human biases exist in the task of text-to-image generations. Inspired by the well-known Implicit Association Test (IAT) from social psychology, we propose a novel Text-to-Image Association Test (T2IAT) framework that quantifies the implicit stereotypes between concepts and valence, and those in the images. We replicate the previously documented bias tests on generative models, including morally neutral tests on flowers and insects as well as demographic stereotypical tests on diverse social attributes. The results of these experiments demonstrate the presence of complex stereotypical behaviors in image generations.
The ability to converse with humans and follow natural language commands is crucial for intelligent unmanned aerial vehicles (a.k.a. drones). It can relieve people’s burden of holding a controller all the time, allow multitasking, and make drone control more accessible for people with disabilities or with their hands occupied. To this end, we introduce Aerial Vision-and-Dialog Navigation (AVDN), to navigate a drone via natural language conversation. We build a drone simulator with a continuous photorealistic environment and collect a new AVDN dataset of over 3k recorded navigation trajectories with asynchronous human-human dialogs between commanders and followers. The commander provides initial navigation instruction and further guidance by request, while the follower navigates the drone in the simulator and asks questions when needed. During data collection, followers’ attention on the drone’s visual observation is also recorded. Based on the AVDN dataset, we study the tasks of aerial navigation from (full) dialog history and propose an effective Human Attention Aided Transformer model (HAA-Transformer), which learns to predict both navigation waypoints and human attention.
Pre-trained vision and language models such as CLIP have witnessed remarkable success in connecting images and texts with a primary focus on English texts. Despite recent efforts to extend CLIP to support other languages, disparities in performance among different languages have been observed due to uneven resource availability. Additionally, current cross-lingual transfer methods of those pre-trained models would consume excessive resources for a large number of languages. Therefore, we propose a new parameter-efficient cross-lingual transfer learning framework that utilizes a translation-based alignment method to mitigate multilingual disparities and explores parameter-efficient fine-tuning methods for parameter-efficient cross-lingual transfer. Extensive experiments on XTD and Multi30K datasets, covering 11 languages under zero-shot, few-shot, and full-dataset learning scenarios, show that our framework significantly reduces the multilingual disparities among languages and improves cross-lingual transfer results, especially in low-resource scenarios, while only keeping and fine-tuning an extremely small number of parameters compared to the full model (e.g., Our framework only requires 0.16% additional parameters of a full-model for each language in the few-shot learning scenario).
Mixture-of-Expert (MoE) Transformer models, such as the Switch Transformer, allow us to successfully scale up model sizes while keeping the amount of compute time fixed. Prior work has established the computational efficiency benefits of using these models. A core component of these models is a router that routes input tokens to different experts in a layer. We show theoretical and empirical evidence that the router’s ability to route tokens intelligently confers a significant advantage to MoE models. We study synthetic settings where the input data is distributed in clusters and show theoretically and empirically that the router learns to route the inputs according to these clusters. Then we perform experiments on real data using the T5X library, where we observe that a trainable router confers a non-trivial benefit instead of a non-trainable router.
The field of text-to-image (T2I) generation has garnered significant attention both within the research community and among everyday users. Despite the advancements of T2I models, a common issue encountered by users is the need for repetitive editing of input prompts in order to receive a satisfactory image, which is time-consuming and labor-intensive. Given the demonstrated text generation power of large-scale language models, such as GPT-k, we investigate the potential of utilizing such models to improve the prompt editing process for T2I generation. We conduct a series of experiments to compare the common edits made by humans and GPT-k, evaluate the performance of GPT-k in prompting T2I, and examine factors that may influence this process. We found that GPT-k models focus more on inserting modifiers while humans tend to replace words and phrases, which includes changes to the subject matter. Experimental results show that GPT-k are more effective in adjusting modifiers rather than predicting spontaneous changes in the primary subject matters. Adopting the edit suggested by GPT-k models may reduce the percentage of remaining edits by 20-30%.
Intelligent navigation-helper agents are critical as they can navigate users in unknown areas through environmental awareness and conversational ability, serving as potential accessibility tools for individuals with disabilities. In this work, we first introduce a novel benchmark, Respond to Help Requests (R2H), to promote the development of multi-modal navigation helpers capable of responding to requests for help, utilizing existing dialog-based embodied datasets. R2H mainly includes two tasks: (1) Respond to Dialog History (RDH), which assesses the helper agent’s ability to generate informative responses based on a given dialog history, and (2) Respond during Interaction (RdI), which evaluates the effectiveness and efficiency of the response during consistent cooperation with a task performer. Furthermore, we explore two approaches to construct the navigation-helper agent, including fine-tuning a novel task-oriented multi-modal response generation model that can see and respond, named SeeRee, and employing a multi-modal large language model in a zero-shot manner. Analysis of the task and method was conducted based on both automatic benchmarking and human evaluations.
Despite the success of Transformer models in vision and language tasks, they often learn knowledge from enormous data implicitly and cannot utilize structured input data directly. On the other hand, structured learning approaches such as graph neural networks (GNNs) that integrate prior information can barely compete with Transformer models. In this work, we aim to benefit from both worlds and propose a novel Multimodal Graph Transformer for question answering tasks that requires performing reasoning across multiple modalities. We introduce a graph-involved plug-and-play quasi-attention mechanism to incorporate multimodal graph information, acquired from text and visual data, to the vanilla self-attention as effective prior. In particular, we construct the text graph, dense region graph, and semantic graph to generate adjacency matrices, and then compose them with input vision and language features to perform downstream reasoning. Such a way of regularizing self-attention with graph information significantly improves the inferring ability and helps align features from different modalities. We validate the effectiveness of Multimodal Graph Transformer over its Transformer baselines on GQA, VQAv2, and MultiModalQA datasets.
Human brains integrate linguistic and perceptual information simultaneously to understand natural language, and hold the critical ability to render imaginations. Such abilities enable us to construct new abstract concepts or concrete objects, and are essential in involving practical knowledge to solve problems in low-resource scenarios. However, most existing methods for Natural Language Understanding (NLU) are mainly focused on textual signals. They do not simulate human visual imagination ability, which hinders models from inferring and learning efficiently from limited data samples. Therefore, we introduce an Imagination-Augmented Cross-modal Encoder (iACE) to solve natural language understanding tasks from a novel learning perspective—imagination-augmented cross-modal understanding. iACE enables visual imagination with external knowledge transferred from the powerful generative and pre-trained vision-and-language models. Extensive experiments on GLUE and SWAG show that iACE achieves consistent improvement over visually-supervised pre-trained models. More importantly, results in extreme and normal few-shot settings validate the effectiveness of iACE in low-resource natural language understanding circumstances.
Vision-and-language navigation (VLN) is a multimodal task where an agent follows natural language instructions and navigates in visual environments. Multiple setups have been proposed, and researchers apply new model architectures or training techniques to boost navigation performance. However, there still exist non-negligible gaps between machines’ performance and human benchmarks. Moreover, the agents’ inner mechanisms for navigation decisions remain unclear. To the best of our knowledge, how the agents perceive the multimodal input is under-studied and needs investigation. In this work, we conduct a series of diagnostic experiments to unveil agents’ focus during navigation. Results show that indoor navigation agents refer to both object and direction tokens when making decisions. In contrast, outdoor navigation agents heavily rely on direction tokens and poorly understand the object tokens. Transformer-based agents acquire a better cross-modal understanding of objects and display strong numerical reasoning ability than non-Transformer-based agents. When it comes to vision-and-language alignments, many models claim that they can align object tokens with specific visual targets. We find unbalanced attention on the vision and text input and doubt the reliability of such cross-modal alignments.
Different Open Information Extraction (OIE) tasks require different types of information, so the OIE field requires strong adaptability of OIE algorithms to meet different task requirements. This paper discusses the adaptability problem in existing OIE systems and designs a new adaptable and efficient OIE system - OIE@OIA as a solution. OIE@OIA follows the methodology of Open Information eXpression (OIX): parsing a sentence to an Open Information Annotation (OIA) Graph and then adapting the OIA graph to different OIE tasks with simple rules. As the core of our OIE@OIA system, we implement an end-to-end OIA generator by annotating a dataset (we make it open available) and designing an efficient learning algorithm for the complex OIA graph. We easily adapt the OIE@OIA system to accomplish three popular OIE tasks. The experimental show that our OIE@OIA achieves new SOTA performances on these tasks, showing the great adaptability of our OIE@OIA system. Furthermore, compared to other end-to-end OIE baselines that need millions of samples for training, our OIE@OIA needs much fewer training samples (12K), showing a significant advantage in terms of efficiency.
A long-term goal of AI research is to build intelligent agents that can communicate with humans in natural language, perceive the environment, and perform real-world tasks. Vision-and-Language Navigation (VLN) is a fundamental and interdisciplinary research topic towards this goal, and receives increasing attention from natural language processing, computer vision, robotics, and machine learning communities. In this paper, we review contemporary studies in the emerging field of VLN, covering tasks, evaluation metrics, methods, etc. Through structured analysis of current progress and challenges, we also highlight the limitations of current VLN and opportunities for future work. This paper serves as a thorough reference for the VLN research community.
Prompt tuning is a new few-shot transfer learning technique that only tunes the learnable prompt for pre-trained vision and language models such as CLIP. However, existing prompt tuning methods tend to learn spurious or entangled representations, which leads to poor generalization to unseen concepts.Towards non-spurious and efficient prompt learning from limited examples, this paper presents a novel Counterfactual Prompt Learning (CPL) method for vision and language models, which simultaneously employs counterfactual generation and contrastive learning in a joint optimization framework.Particularly, CPL constructs counterfactual by identifying minimal non-spurious feature change between semantically-similar positive and negative samples that causes concept change, and learns more generalizable prompt representation from both factual and counterfactual examples via contrastive learning. Extensive experiments demonstrate that CPL can obtain superior few-shot performance on different vision and language tasks than previous prompt tuning methods on CLIP. On image classification, we achieve 3.55% average relative improvement on unseen classes across seven datasets; on image-text retrieval and visual question answering, we gain up to 4.09% and 25.08% relative improvements across three few-shot scenarios on unseen test sets respectively.
Automatically generating compilable programs with (or without) natural language descriptions has always been a touchstone problem for computational linguistics and automated software engineering. Existing deep-learning approaches model code generation as text generation, either constrained by grammar structures in decoder, or driven by pre-trained language models on large-scale code corpus (e.g., CodeGPT, PLBART, and CodeT5). However, few of them account for compilability of the generated programs. To improve compilability of the generated programs, this paper proposes COMPCODER, a three-stage pipeline utilizing compiler feedback for compilable code generation, including language model fine-tuning, compilability reinforcement, and compilability discrimination. Comprehensive experiments on two code generation tasks demonstrate the effectiveness of our proposed approach, improving the success rate of compilation from 44.18 to 89.18 in code completion on average and from 70.3 to 96.2 in text-to-code generation, respectively, when comparing with the state-of-the-art CodeGPT.
Recently pre-trained multimodal models, such as CLIP, have shown exceptional capabilities towards connecting images and natural language. The textual representations in English can be desirably transferred to multilingualism and support downstream multimodal tasks for different languages. Nevertheless, the principle of multilingual fairness is rarely scrutinized: do multilingual multimodal models treat languages equally? Are their performances biased towards particular languages? To answer these questions, we view language as the fairness recipient and introduce two new fairness notions, multilingual individual fairness and multilingual group fairness, for pre-trained multimodal models. Multilingual individual fairness requires that text snippets expressing similar semantics in different languages connect similarly to images, while multilingual group fairness requires equalized predictive performance across languages. We characterize the extent to which pre-trained multilingual vision-and-language representations are individually fair across languages. However, extensive experiments demonstrate that multilingual representations do not satisfy group fairness: (1) there is a severe multilingual accuracy disparity issue; (2) the errors exhibit biases across languages conditioning the group of people in the images, including race, gender and age.
Research Replication Prediction (RRP) is the task of predicting whether a published research result can be replicated or not. Building an interpretable neural text classifier for RRP promotes the understanding of why a research paper is predicted as replicable or non-replicable and therefore makes its real-world application more reliable and trustworthy. However, the prior works on model interpretation mainly focused on improving the model interpretability at the word/phrase level, which are insufficient especially for long research papers in RRP. Furthermore, the existing methods cannot utilize a large size of unlabeled dataset to further improve the model interpretability. To address these limitations, we aim to build an interpretable neural model which can provide sentence-level explanations and apply weakly supervised approach to further leverage the large corpus of unlabeled datasets to boost the interpretability in addition to improving prediction performance as existing works have done. In this work, we propose the Variational Contextual Consistency Sentence Masking (VCCSM) method to automatically extract key sentences based on the context in the classifier, using both labeled and unlabeled datasets. Results of our experiments on RRP along with European Convention of Human Rights (ECHR) datasets demonstrate that VCCSM is able to improve the model interpretability for the long document classification tasks using the area over the perturbation curve and post-hoc accuracy as evaluation metrics.
Recent years have witnessed increasing interest in code representation learning, which aims to represent the semantics of source code into distributed vectors. Currently, various works have been proposed to represent the complex semantics of source code from different views, including plain text, Abstract Syntax Tree (AST), and several kinds of code graphs (e.g., Control/Data Flow Graph). However, most of them only consider a single view of source code independently, ignoring the correspondences among different views. In this paper, we propose to integrate different views with the natural-language description of source code into a unified framework with Multi-View contrastive Pre-training, and name our model as CODE-MVP. Specifically, we first extract multiple code views using compiler tools, and learn the complementary information among them under a contrastive learning framework. Inspired by the type checking in compilation, we also design a fine-grained type inference objective in the pre-training. Experiments on three downstream tasks over five datasets demonstrate the superiority of CODE-MVP when compared with several state-of-the-art baselines. For example, we achieve 2.4/2.3/1.1 gain in terms of MRR/MAP/Accuracy metrics on natural language code retrieval, code similarity, and code defect detection tasks, respectively.
Leveraging the dependency tree of the input sentence is able to improve the model performance for relation extraction. A challenging issue is how to remove confusions from the tree. Efforts have been made to utilize the dependency connections between words to selectively emphasize target-relevant information. However, these approaches are limited in focusing on exploiting dependency types. In this paper, we propose dependency position encoding (DPE), an efficient way of incorporating both dependency connections and dependency types into the self-attention mechanism to distinguish the importance of different word dependencies for the task. In contrast to previous studies that process input sentence and dependency information in separate streams, DPE can be seamlessly incorporated into the Transformer and makes it possible to use an one-stream scheme to extract relations between entity pairs. Extensive experiments show that models with our DPE significantly outperform the previous methods on SemEval 2010 Task 8, KBP37, and TACRED.
With a knowledge graph and a set of if-then rules, can we reason about the conclusions given a set of observations? In this work, we formalize this question as the cognitive inference problem, and introduce the Cognitive Knowledge Graph (CogKG) that unifies two representations of heterogeneous symbolic knowledge: expert rules and relational facts. We propose a general framework in which the unified knowledge representations can perform both learning and reasoning. Specifically, we implement the above framework in two settings, depending on the availability of labeled data. When no labeled data are available for training, the framework can directly utilize symbolic knowledge as the decision basis and perform reasoning. When labeled data become available, the framework casts symbolic knowledge as a trainable neural architecture and optimizes the connection weights among neurons through gradient descent. Empirical study on two clinical diagnosis benchmarks demonstrates the superiority of the proposed method over time-tested knowledge-driven and data-driven methods, showing the great potential of the proposed method in unifying heterogeneous symbolic knowledge, i.e., expert rules and relational facts, as the substrate of machine learning and reasoning models.
Real human conversation data are complicated, heterogeneous, and noisy, from which building open-domain dialogue systems remains a challenging task. In fact, such dialogue data still contains a wealth of information and knowledge, however, they are not fully explored. In this paper, we show existing open-domain dialogue generation methods that memorize context-response paired data with autoregressive or encode-decode language models underutilize the training data. Different from current approaches, using external knowledge, we explore a retrieval-generation training framework that can take advantage of the heterogeneous and noisy training data by considering them as “evidence”. In particular, we use BERTScore for retrieval, which gives better qualities of the evidence and generation. Experiments over publicly available datasets demonstrate that our method can help models generate better responses, even such training data are usually impressed as low-quality data. Such performance gain is comparable with those improved by enlarging the training set, even better. We also found that the model performance has a positive correlation with the relevance of the retrieved evidence. Moreover, our method performed well on zero-shot experiments, which indicates that our method can be more robust to real-world data.
One of the most challenging topics in Natural Language Processing (NLP) is visually-grounded language understanding and reasoning. Outdoor vision-and-language navigation (VLN) is such a task where an agent follows natural language instructions and navigates in real-life urban environments. With the lack of human-annotated instructions that illustrate the intricate urban scenes, outdoor VLN remains a challenging task to solve. In this paper, we introduce a Multimodal Text Style Transfer (MTST) learning approach and leverage external multimodal resources to mitigate data scarcity in outdoor navigation tasks. We first enrich the navigation data by transferring the style of the instructions generated by Google Maps API, then pre-train the navigator with the augmented external outdoor navigation dataset. Experimental results show that our MTST learning approach is model-agnostic, and our MTST approach significantly outperforms the baseline models on the outdoor VLN task, improving task completion rate by 8.7% relatively on the test set.
Recent advances in language and vision push forward the research of captioning a single image to describing visual differences between image pairs. Suppose there are two images, I_1 and I_2, and the task is to generate a description W_1,2 comparing them, existing methods directly model I_1, I_2 -> W_1,2 mapping without the semantic understanding of individuals. In this paper, we introduce a Learning-to-Compare (L2C) model, which learns to understand the semantic structures of these two images and compare them while learning to describe each one. We demonstrate that L2C benefits from a comparison between explicit semantic representations and single-image captions, and generalizes better on the new testing image pairs. It outperforms the baseline on both automatic evaluation and human evaluation for the Birds-to-Words dataset.
Internet search affects people’s cognition of the world, so mitigating biases in search results and learning fair models is imperative for social good. We study a unique gender bias in image search in this work: the search images are often gender-imbalanced for gender-neutral natural language queries. We diagnose two typical image search models, the specialized model trained on in-domain datasets and the generalized representation model pre-trained on massive image and text data across the internet. Both models suffer from severe gender bias. Therefore, we introduce two novel debiasing approaches: an in-processing fair sampling method to address the gender imbalance issue for training models, and a post-processing feature clipping method base on mutual information to debias multimodal representations of pre-trained models. Extensive experiments on MS-COCO and Flickr30K benchmarks show that our methods significantly reduce the gender bias in image search models.
Sentence matching aims to identify the special relationship between two sentences, and plays a key role in many natural language processing tasks. However, previous studies mainly focused on exploiting either syntactic or semantic information for sentence matching, and no studies consider integrating both of them. In this study, we propose integrating syntax and semantics into BERT with sentence matching. In particular, we use an implicit syntax and semantics integration method that is less sensitive to the output structure information. Thus the implicit integration can alleviate the error propagation problem. The experimental results show that our approach has achieved state-of-the-art or competitive performance on several sentence matching datasets, demonstrating the benefits of implicitly integrating syntactic and semantic features in sentence matching.
Vision-and-Language Navigation (VLN) is a natural language grounding task where an agent learns to follow language instructions and navigate to specified destinations in real-world environments. A key challenge is to recognize and stop at the correct location, especially for complicated outdoor environments. Existing methods treat the STOP action equally as other actions, which results in undesirable behaviors that the agent often fails to stop at the destination even though it might be on the right path. Therefore, we propose Learning to Stop (L2Stop), a simple yet effective policy module that differentiates STOP and other actions. Our approach achieves the new state of the art on a challenging urban VLN dataset Touchdown, outperforming the baseline by 6.89% (absolute improvement) on Success weighted by Edit Distance (SED).
Existing OIE (Open Information Extraction) algorithms are independent of each other such that there exist lots of redundant works; the featured strategies are not reusable and not adaptive to new tasks. This paper proposes a new pipeline to build OIE systems, where an Open-domain Information eXpression (OIX) task is proposed to provide a platform for all OIE strategies. The OIX is an OIE friendly expression of a sentence without information loss. The generation procedure of OIX contains shared works of OIE algorithms so that OIE strategies can be developed on the platform of OIX as inference operations focusing on more critical problems. Based on the same platform of OIX, the OIE strategies are reusable, and people can select a set of strategies to assemble their algorithm for a specific task so that the adaptability may be significantly increased. This paper focuses on the task of OIX and propose a solution – Open Information Annotation (OIA). OIA is a predicate-function-argument annotation for sentences. We label a data set of sentence-OIA pairs and propose a dependency-based rule system to generate OIA annotations from sentences. The evaluation results reveal that learning the OIA from a sentence is a challenge owing to the complexity of natural language sentences, and it is worthy of attracting more attention from the research community.
Iterative Language-Based Image Editing (ILBIE) tasks follow iterative instructions to edit images step by step. Data scarcity is a significant issue for ILBIE as it is challenging to collect large-scale examples of images before and after instruction-based changes. Yet, humans still accomplish these editing tasks even when presented with an unfamiliar image-instruction pair. Such ability results from counterfactual thinking, the ability to think about possible alternatives to events that have happened already. In this paper, we introduce a Self-Supervised Counterfactual Reasoning (SSCR) framework that incorporates counterfactual thinking to overcome data scarcity. SSCR allows the model to consider out-of-distribution instructions paired with previous images. With the help of cross-task consistency (CTC), we train these counterfactual instructions in a self-supervised scenario. Extensive results show that SSCR improves the correctness of ILBIE in terms of both object identity and position, establishing a new state of the art (SOTA) on two IBLIE datasets (i-CLEVR and CoDraw). Even with only 50% of the training data, SSCR achieves a comparable result to using complete data.
A major challenge in visually grounded language generation is to build robust benchmark datasets and models that can generalize well in real-world settings. To do this, it is critical to ensure that our evaluation protocols are correct, and benchmarks are reliable. In this work, we set forth to design a set of experiments to understand an important but often ignored problem in visually grounded language generation: given that humans have different utilities and visual attention, how will the sample variance in multi-reference datasets affect the models’ performance? Empirically, we study several multi-reference datasets and corresponding vision-and-language tasks. We show that it is of paramount importance to report variance in experiments; that human-generated references could vary drastically in different datasets/tasks, revealing the nature of each task; that metric-wise, CIDEr has shown systematically larger variances than others. Our evaluations on reference-per-instance shed light on the design of reliable datasets in the future.
Variational autoencoders (VAEs) have received much attention recently as an end-to-end architecture for text generation with latent variables. However, previous works typically focus on synthesizing relatively short sentences (up to 20 words), and the posterior collapse issue has been widely identified in text-VAEs. In this paper, we propose to leverage several multi-level structures to learn a VAE model for generating long, and coherent text. In particular, a hierarchy of stochastic layers between the encoder and decoder networks is employed to abstract more informative and semantic-rich latent codes. Besides, we utilize a multi-level decoder structure to capture the coherent long-term structure inherent in long-form texts, by generating intermediate sentence representations as high-level plan vectors. Extensive experimental results demonstrate that the proposed multi-level VAE model produces more coherent and less repetitive long text compared to baselines as well as can mitigate the posterior-collapse issue.
Existing models for extractive summarization are usually trained from scratch with a cross-entropy loss, which does not explicitly capture the global context at the document level. In this paper, we aim to improve this task by introducing three auxiliary pre-training tasks that learn to capture the document-level context in a self-supervised fashion. Experiments on the widely-used CNN/DM dataset validate the effectiveness of the proposed auxiliary tasks. Furthermore, we show that after pre-training, a clean model with simple building blocks is able to outperform previous state-of-the-art that are carefully designed.
The sequential order of utterances is often meaningful in coherent dialogues, and the order changes of utterances could lead to low-quality and incoherent conversations. We consider the order information as a crucial supervised signal for dialogue learning, which, however, has been neglected by many previous dialogue systems. Therefore, in this paper, we introduce a self-supervised learning task, inconsistent order detection, to explicitly capture the flow of conversation in dialogues. Given a sampled utterance pair triple, the task is to predict whether it is ordered or misordered. Then we propose a sampling-based self-supervised network SSN to perform the prediction with sampled triple references from previous dialogue history. Furthermore, we design a joint learning framework where SSN can guide the dialogue systems towards more coherent and relevant dialogue learning through adversarial training. We demonstrate that the proposed methods can be applied to both open-domain and task-oriented dialogue scenarios, and achieve the new state-of-the-art performance on the OpenSubtitiles and Movie-Ticket Booking datasets.
The overreliance on large parallel corpora significantly limits the applicability of machine translation systems to the majority of language pairs. Back-translation has been dominantly used in previous approaches for unsupervised neural machine translation, where pseudo sentence pairs are generated to train the models with a reconstruction loss. However, the pseudo sentences are usually of low quality as translation errors accumulate during training. To avoid this fundamental issue, we propose an alternative but more effective approach, extract-edit, to extract and then edit real sentences from the target monolingual corpora. Furthermore, we introduce a comparative translation loss to evaluate the translated target sentences and thus train the unsupervised translation systems. Experiments show that the proposed approach consistently outperforms the previous state-of-the-art unsupervised machine translation systems across two benchmarks (English-French and English-German) and two low-resource language pairs (English-Romanian and English-Russian) by more than 2 (up to 3.63) BLEU points.
Learning target side syntactic structure has been shown to improve Neural Machine Translation (NMT). However, incorporating syntax through latent variables introduces additional complexity in inference, as the models need to marginalize over the latent syntactic structures. To avoid this, models often resort to greedy search which only allows them to explore a limited portion of the latent space. In this work, we introduce a new latent variable model, LaSyn, that captures the co-dependence between syntax and semantics, while allowing for effective and efficient inference over the latent space. LaSyn decouples direct dependence between successive latent variables, which allows its decoder to exhaustively search through the latent syntactic choices, while keeping decoding speed proportional to the size of the latent variable vocabulary. We implement LaSyn by modifying a transformer-based NMT system and design a neural expectation maximization algorithm that we regularize with part-of-speech information as the latent sequences. Evaluations on four different MT tasks show that incorporating target side syntax with LaSyn improves both translation quality, and also provides an opportunity to improve diversity.
Despite detection of suicidal ideation on social media has made great progress in recent years, people’s implicitly and anti-real contrarily expressed posts still remain as an obstacle, constraining the detectors to acquire higher satisfactory performance. Enlightened by the hidden “tree holes” phenomenon on microblog, where people at suicide risk tend to disclose their inner real feelings and thoughts to the microblog space whose authors have committed suicide, we explore the use of tree holes to enhance microblog-based suicide risk detection from the following two perspectives. (1) We build suicide-oriented word embeddings based on tree hole contents to strength the sensibility of suicide-related lexicons and context based on tree hole contents. (2) A two-layered attention mechanism is deployed to grasp intermittently changing points from individual’s open blog streams, revealing one’s inner emotional world more or less. Our experimental results show that with suicide-oriented word embeddings and attention, microblog-based suicide risk detection can achieve over 91% accuracy. A large-scale well-labelled suicide data set is also reported in the paper.
This paper presents a new metric called TIGEr for the automatic evaluation of image captioning systems. Popular metrics, such as BLEU and CIDEr, are based solely on text matching between reference captions and machine-generated captions, potentially leading to biased evaluations because references may not fully cover the image content and natural language is inherently ambiguous. Building upon a machine-learned text-image grounding model, TIGEr allows to evaluate caption quality not only based on how well a caption represents image content, but also on how well machine-generated captions match human-generated captions. Our empirical tests show that TIGEr has a higher consistency with human judgments than alternative existing metrics. We also comprehensively assess the metric’s effectiveness in caption evaluation by measuring the correlation between human judgments and metric scores.
A major challenge for video captioning is to combine audio and visual cues. Existing multi-modal fusion methods have shown encouraging results in video understanding. However, the temporal structures of multiple modalities at different granularities are rarely explored, and how to selectively fuse the multi-modal representations at different levels of details remains uncharted. In this paper, we propose a novel hierarchically aligned cross-modal attention (HACA) framework to learn and selectively fuse both global and local temporal dynamics of different modalities. Furthermore, for the first time, we validate the superior performance of the deep audio features on the video captioning task. Finally, our HACA model significantly outperforms the previous best systems and achieves new state-of-the-art results on the widely used MSR-VTT dataset.
Though impressive results have been achieved in visual captioning, the task of generating abstract stories from photo streams is still a little-tapped problem. Different from captions, stories have more expressive language styles and contain many imaginary concepts that do not appear in the images. Thus it poses challenges to behavioral cloning algorithms. Furthermore, due to the limitations of automatic metrics on evaluating story quality, reinforcement learning methods with hand-crafted rewards also face difficulties in gaining an overall performance boost. Therefore, we propose an Adversarial REward Learning (AREL) framework to learn an implicit reward function from human demonstrations, and then optimize policy search with the learned reward function. Though automatic evaluation indicates slight performance boost over state-of-the-art (SOTA) methods in cloning expert behaviors, human evaluation shows that our approach achieves significant improvement in generating more human-like stories than SOTA systems.
Task-oriented dialog systems are becoming pervasive, and many companies heavily rely on them to complement human agents for customer service in call centers. With globalization, the need for providing cross-lingual customer support becomes more urgent than ever. However, cross-lingual support poses great challenges—it requires a large amount of additional annotated data from native speakers. In order to bypass the expensive human annotation and achieve the first step towards the ultimate goal of building a universal dialog system, we set out to build a cross-lingual state tracking framework. Specifically, we assume that there exists a source language with dialog belief tracking annotations while the target languages have no annotated dialog data of any form. Then, we pre-train a state tracker for the source language as a teacher, which is able to exploit easy-to-access parallel data. We then distill and transfer its own knowledge to the student state tracker in target languages. We specifically discuss two types of common parallel resources: bilingual corpus and bilingual dictionary, and design different transfer learning strategies accordingly. Experimentally, we successfully use English state tracker as the teacher to transfer its knowledge to both Italian and German trackers and achieve promising results.
User experience is essential for human-computer dialogue systems. However, it is impractical to ask users to provide explicit feedbacks when the agents’ responses displease them. Therefore, in this paper, we explore to predict users’ imminent dissatisfactions caused by intelligent agents by analysing the existing utterances in the dialogue sessions. To our knowledge, this is the first work focusing on this task. Several possible factors that trigger negative emotions are modelled. A relation sequence model (RSM) is proposed to encode the sequence of appropriateness of current response with respect to the earlier utterances. The experimental results show that the proposed structure is effective in modelling emotional risk (possibility of negative feedback) than existing conversation modelling approaches. Besides, strategies of obtaining distance supervision data for pre-training are also discussed in this work. Balanced sampling with respect to the last response in the distance supervision data are shown to be reliable for data augmentation.
For practical chatbots, one of the essential factor for improving user experience is the capability of customizing the talking style of the agents, that is, to make chatbots provide responses meeting users’ preference on language styles, topics, etc. To address this issue, this paper proposes to incorporate linguistic biases, which implicitly involved in the conversation corpora generated by human groups in the Social Network Services (SNS), into the encoder-decoder based response generator. By attaching a specially designed neural component to dynamically control the impact of linguistic biases in response generation, a Group Linguistic Bias Aware Neural Response Generation (GLBA-NRG) model is eventually presented. The experimental results on the dataset from the Chinese SNS show that the proposed architecture outperforms the current response generating models by producing both meaningful and vivid responses with customized styles.