With the rise of generative AI, automated fact-checking methods to combat misinformation are becoming more and more important. However, factual claim detection, the first step in a fact-checking pipeline, suffers from two key issues that limit its scalability and generalizability: (1) inconsistency in definitions of the task and what a claim is, and (2) the high cost of manual annotation. To address (1), we review the definitions in related work and propose a unifying definition of factual claims that focuses on verifiability. To address (2), we introduce AFaCTA (Automatic Factual Claim deTection Annotator), a novel framework that assists in the annotation of factual claims with the help of large language models (LLMs). AFaCTA calibrates its annotation confidence with consistency along three predefined reasoning paths. Extensive evaluation and experiments in the domain of political speech reveal that AFaCTA can efficiently assist experts in annotating factual claims and training high-quality classifiers, and can work with or without expert supervision. Our analyses also result in PoliClaim, a comprehensive claim detection dataset spanning diverse political topics.
Interpretability research aims to bridge the gap between the empirical success and our scientific understanding of the inner workings of large language models (LLMs). However, most existing research in this area focused on analyzing a single mechanism, such as how models copy or recall factual knowledge. In this work, we propose the formulation of competition of mechanisms, which instead of individual mechanisms focuses on the interplay of multiple mechanisms, and traces how one of them becomes dominant in the final prediction. We uncover how and where the competition of mechanisms happens within LLMs using two interpretability methods, logit inspection and attention modification. Our findings show traces of the mechanisms and their competition across various model components, and reveal attention positions that effectively control the strength of certain mechanisms.
Using questions in written text is an effective strategy to enhance readability. However, what makes an active reading question good, what the linguistic role of these questions is, and what is their impact on human reading remains understudied. We introduce GuidingQ, a dataset of 10K in-text questions from textbooks and scientific articles. By analyzing the dataset, we present a comprehensive understanding of the use, distribution, and linguistic characteristics of these questions. Then, we explore various approaches to generate such questions using language models. Our results highlight the importance of capturing inter-question relationships and the challenge of question position identification in generating these questions. Finally, we conduct a human study to understand the implication of such questions on reading comprehension. We find that the generated questions are of high quality and are almost as effective as human-written questions in terms of improving readers’ memorization and comprehension.
Large language models (LLMs) exhibit an intriguing ability to learn a novel task from in-context examples presented in a demonstration, termed in-context learning (ICL). Understandably, a swath of research has been dedicated to uncovering the theories underpinning ICL. One popular hypothesis explains ICL by task selection. LLMs identify the task based on the demonstration and generalize it to the prompt. Another popular hypothesis is that ICL is a form of meta-learning, i.e., the models learn a learning algorithm at pre-training time and apply it to the demonstration. Finally, a third hypothesis argues that LLMs use the demonstration to select a composition of tasks learned during pre-training to perform ICL. In this paper, we empirically explore these three hypotheses that explain LLMs’ ability to learn in context with a suite of experiments derived from common text classification tasks. We invalidate the first two hypotheses with counterexamples and provide evidence in support of the last hypothesis. Our results suggest an LLM could learn a novel task in context via composing tasks learned during pre-training.
Large language models (LLMs) offer many opportunities to scale high-quality personalized tutoring. A promising approach is to build dialog tutoring models to scaffold students’ problem-solving. However, even though existing models perform well in solving reasoning questions, they can struggle to precisely detect student’s errors and tailor their feedback to these errors. Inspired by real-world teaching practice where teachers identify student errors and customize their response based on them, we focus on verifying student solutions and show how grounding to such verification improves the overall quality of tutor response generation. We collect a dataset of 1,002 stepwise math reasoning chains with the first error step annotated by teachers. We show empirically that finding the mistake in a student solution is challenging for current models. We propose and evaluate several verifiers for detecting these errors. Using both automatic and human evaluation we show that the student solution verifiers steer the generation model towards highly targeted responses to student error which are more often correct with less hallucinations compared to existing baselines. The benchmark dataset and code will be released openly.
We present ALT (ALignment with Textual feedback), an approach that aligns language models with user preferences expressed in text. We argue that text offers greater expressiveness, enabling users to provide richer feedback than simple comparative preferences and this richer feedback can lead to more efficient and effective alignment. ALT aligns the model by conditioning its generation on the textual feedback. Our method relies solely on language modeling techniques and requires minimal hyper-parameter tuning, though it still presents the main benefit of RL-based algorithms and can effectively learn from textual feedback. We explore the efficacy and efficiency of textual feedback across different tasks such as toxicity reduction, summarization, and dialog response. We find that ALT outperforms PPO for the task of toxicity reduction while being able to match its performance on summarization with only 20% of the samples. We also explore how ALT can be used with feedback provided by an existing LLM.
Natural languages are believed to be (mildly) context-sensitive. Despite underpinning remarkably capable large language models, transformers are unable to model many context-free language tasks. In an attempt to address this limitation in the modeling power of transformer-based language models, we propose augmenting them with a differentiable, stack-based attention mechanism. Our stack-basedattention mechanism can be incorporated into any transformer-based language model and adds a level of interpretability to the model. We show that the addition of our stack-based attention mechanism enables the transformer to model some, but not all, deterministic context-freelanguages.
Citation count of a paper is a commonly used proxy for evaluating the significance of a paper in the scientific community. Yet citation measures are widely criticized for failing to accurately reflect the true impact of a paper. Thus, we propose CausalCite, a new way to measure the significance of a paper by assessing the causal impact of the paper on its follow-up papers. CausalCite is based on a novel causal inference method, TextMatch, which adapts the traditional matching framework to high-dimensional text embeddings. TextMatch encodes each paper using text embeddings from large language models (LLMs), extracts similar samples by cosine similarity, and synthesizes a counterfactual sample as the weighted average of similar papers according to their similarity values. We demonstrate the effectiveness of CausalCite on various criteria, such as high correlation with paper impact as reported by scientific experts on a previous dataset of 1K papers, (test-of-time) awards for past papers, and its stability across various subfields of AI. We also provide a set of findings that can serve as suggested ways for future researchers to use our metric for a better understanding of the quality of a paper. Our code is available at https://github.com/causalNLP/causal-cite.
Educational chatbots are a promising tool for assisting student learning. However, the development of effective chatbots in education has been challenging, as high-quality data is seldom available in this domain. In this paper, we propose a framework for generating synthetic teacher-student interactions grounded in a set of textbooks. Our approaches capture a key aspect of learning interactions where curious students with partial knowledge interactively ask teachers questions about the material in the textbook. We highlight various quality criteria that such dialogues must fulfill and compare several approaches relying on either prompting or finetuning large language models according to these criteria. We use the synthetic dialogues to train educational chatbots and show the benefits of further fine-tuning in educational domains. However, careful human evaluation shows that our best data synthesis method still suffers from hallucinations and tends to reiterate information from previous conversations. Our findings offer insights for future efforts in synthesizing conversational data that strikes a balance between size and quality. We will open-source our data and code.
One strength of modern language models is their ability to incorporate information from a user-input context when answering queries. However, they are not equally sensitive to the subtle changes to that context.To quantify this, Du et al. (2024) gives an information-theoretic metric to measure such sensitivity. Their metric, susceptibility, is defined as the degree to which contexts can influence a model’s response to a query at a distributional level.However, exactly computing susceptibility is difficult and, thus, Du et al. (2024) falls back on a Monte Carlo approximation.Due to the large number of samples required, the Monte Carlo approximation is inefficient in practice. As a faster alternative, we propose Fisher susceptibility, an efficient method to estimate the susceptibility based on Fisher information.Empirically, we validate that Fisher susceptibility is comparable to Monte Carlo estimated susceptibility across a diverse set of query domains despite its being 70× faster.Exploiting the improved efficiency, we apply Fisher susceptibility to analyze factors affecting the susceptibility of language models.We observe that larger models are as susceptible as smaller ones.
Sentiment analysis (SA) aims to identify the sentiment expressed in a piece of text, often in the form of a review. Assuming a review and the sentiment associated with it, in this paper we formulate SA as a combination of two tasks: (1) a causal discovery task that distinguishes whether a review “primes” the sentiment (Causal Hypothesis C1), or the sentiment “primes” the review (Causal Hypothesis C2); and (2) the traditional prediction task to model the sentiment using the review as input. Using the peak-end rule in psychology, we classify a sample as C1 if its overall sentiment score approximates an average of all the sentence-level sentiments in the review, and as C2 if the overall sentiment score approximates an average of the peak and end sentiments. For the prediction task, we use the discovered causal mechanisms behind the samples to improve the performance of LLMs by proposing causal prompts that give the models an inductive bias of the underlying causal graph, leading to substantial improvements by up to 32.13 F1 points on zero-shot five-class SA.
Implicit Personalization (IP) is a phenomenon of language models inferring a user’s background from the implicit cues in the input prompts and tailoring the response based on this inference. While previous work has touched upon various instances of this problem, there lacks a unified framework to study this behavior. This work systematically studies IP through a rigorous mathematical formulation, a multi-perspective moral reasoning framework, and a set of case studies. Our theoretical foundation for IP relies on a structural causal model and introduces a novel method, indirect intervention, to estimate the causal effect of a mediator variable that cannot be directly intervened upon. Beyond the technical approach, we also introduce a set of moral reasoning principles based on three schools of moral philosophy to study when IP may or may not be ethically appropriate. Equipped with both mathematical and ethical insights, we present three diverse case studies illustrating the varied nature of the IP problem and offer recommendations for future research.
Mapping words into a fixed-dimensional vector space is the backbone of modern NLP. While most word embedding methods successfully encode semantic information, they overlook phonetic information that is crucial for many tasks. We develop three methods that use articulatory features to build phonetically informed word embeddings. To address the inconsistent evaluation of existing phonetic word embedding methods, we also contribute a task suite to fairly evaluate past, current, and future methods. We evaluate both (1) intrinsic aspects of phonetic word embeddings, such as word retrieval and correlation with sound similarity, and (2) extrinsic performance on tasks such as rhyme and cognate detection and sound analogies. We hope our task suite will promote reproducibility and inspire future phonetic embedding research.
Large Language Models (LLMs) have demonstrated remarkable generative abilities, but can they judge the quality of their own generations and self-improve?A popular concept, referred to as *self-refinement*, postulates that LLMs can detect and correct the errors in their generations when asked to do so. However, recent empirical evidence points in the opposite direction, suggesting that LLMs often struggle to accurately identify errors when reasoning is involved. To address this, we propose a reasoning with a refinement strategy called *ART: Ask, Refine, and Trust*, which *asks* necessary questions to decide when an LLM should *refine* its output, and uses it to affirm or deny *trust* in its refinement by ranking the refinement and the initial prediction. On two multistep reasoning tasks of mathematical word problems (GSM8K) and question answering (StrategyQA), *ART* achieves a performance gain of +5 points over self-refinement baselines, while using a much smaller model as the decision maker. We believe that *ART* with smaller models, making refinement decisions can be a cost-effective alternative to fine-tuning LLMs.
Generating factual responses is a crucial requirement for dialogue systems. To promotemore factual responses, a common strategyis to ground their responses in relevant documents that inform response generation. However, common dialogue models still often hallucinate information that was not containedin these documents and is therefore unfaithful. In this work, we propose to alleviate suchhallucinations by ‘subtracting’ the parametersof a model trained to hallucinate from a dialogue response generation model in order to‘negate’ the contribution of such hallucinatedexamples from it. Extensive automatic and human evaluation shows favourable results whencompared to state-of-the-art methods that combine the distributions of multiple models, suchas DExperts (Liu et al., 2021), and others thatchange the training procedure, such as Quark(Lu et al., 2022a). Finally, we show how wecan not only reduce hallucinations but also discourage extractive responses, which are oftena consequence of reducing hallucinations byencouraging copy-pasting of document spans.We publicly release our code for reproducibilityand facilitating further research.
High-quality Machine Translation (MT) evaluation relies heavily on human judgments.Comprehensive error classification methods, such as Multidimensional Quality Metrics (MQM), are expensive as they are time-consuming and can only be done by experts, whose availability may be limited especially for low-resource languages.On the other hand, just assigning overall scores, like Direct Assessment (DA), is simpler and faster and can be done by translators of any level, but is less reliable.In this paper, we introduce Error Span Annotation (ESA), a human evaluation protocol which combines the continuous rating of DA with the high-level error severity span marking of MQM.We validate ESA by comparing it to MQM and DA for 12 MT systems and one human reference translation (English to German) from WMT23. The results show that ESA offers faster and cheaper annotations than MQM at the same quality level, without the requirement of expensive MQM experts.
We have recently witnessed a number of impressive results on hard mathematical reasoning problems with language models. At the same time, the robustness of these models has also been called into question; recent works have shown that models can rely on shallow patterns in the problem description when generating a solution. Building on the idea of behavioral testing, we propose a novel framework, which pins down the causal effect of various factors in the input, e.g., the surface form of the problem text, the operands, and math operators on the output solution. By grounding the behavioral analysis in a causal graph describing an intuitive reasoning process, we study the behavior of language models in terms of robustness and sensitivity to direct interventions in the input space. We apply our framework on a test bed of math word problems. Our analysis shows that robustness does not appear to continuously improve as a function of size, but the GPT-3 Davinci models (175B) achieve a dramatic improvement in both robustness and sensitivity compared to all other GPT variants.
Subword tokenization is a key part of most NLP pipelines. However, little is known about why some tokenizer and hyperparameter combinations lead to improved downstream model performance over others. We propose that good tokenizers lead to efficient channel usage, where the channel is the means by which some input is conveyed to the model and efficiency can be quantified in information-theoretic terms as the ratio of the Shannon entropy to the maximum entropy of the subword distribution. Nevertheless, an optimal encoding according to Shannon entropy assigns extremely long codes to low-frequency subwords and very short codes to high-frequency subwords.Defining efficiency in terms of Rényi entropy, on the other hand, penalizes distributions with either very high or very low-frequency subwords.We posit that (1) extremely high-frequency subwords are problematic because their meaning is not distinct and (2) that low-frequency subwords may not appear frequently enough for their meaning to be learned properly; encodings that induce unigram distributions with either can harm model performance. In machine translation, we find that across multiple tokenizers, the Rényi entropy has a very strong correlation with BLEU: 0.82 in comparison to just -0.30 for compressed length.
Multi-task learning (MTL) aims at achieving a better model by leveraging data and knowledge from multiple tasks. However, MTL does not always work – sometimes negative transfer occurs between tasks, especially when aggregating loosely related skills, leaving it an open question when MTL works. Previous studies show that MTL performance can be improved by algorithmic tricks. However, what tasks and skills should be included is less well explored. In this work, we conduct a case study in Financial NLP where multiple datasets exist for skills relevant to the domain, such as numeric reasoning and sentiment analysis. Due to the task difficulty and data scarcity in the Financial NLP domain, we explore when aggregating such diverse skills from multiple datasets with MTL can work. Our findings suggest that the key to MTL success lies in skill diversity, relatedness between tasks, and choice of aggregation size and shared capacity. Specifically, MTL works well when tasks are diverse but related, and when the size of the task aggregation and the shared capacity of the model are balanced to avoid overwhelming certain tasks.
Several recent papers claim to have achieved human parity at sentence-level machine translation (MT)—especially between high-resource language pairs. In response, the MT community has, in part, shifted its focus to document-level translation. Translating documents requires a deeper understanding of the structure and meaning of text, which is often captured by various kinds of discourse phenomena such as consistency, coherence, and cohesion. However, this renders conventional sentence-level MT evaluation benchmarks inadequate for evaluating the performance of context-aware MT systems. This paperpresents a new dataset with rich discourse annotations, built upon the large-scale parallel corpus BWB introduced in Jiang et al. (2022a). The new BWB annotation introduces four extra evaluation aspects, i.e., entity, terminology, coreference, and quotation, covering 15,095 entity mentions in both languages. Using these annotations, we systematically investigate the similarities and differences between the discourse structures of source and target languages, and the challenges they pose to MT. We discover that MT outputs differ fundamentally from human translations in terms of their latent discourse structures. This gives us a new perspective on the challenges and opportunities in document-level MT. We make our resource publicly available to spur future research in document-level MT and its generalization to other language translation tasks.
Adaptive learning aims to provide customized educational activities (e.g., exercises) to address individual learning needs. However, manual construction and delivery of such activities is a laborious process. Thus, in this paper, we study a novel task of adaptive and personalized exercise generation for online language learning. To this end, we combine a knowledge tracing model that estimates each student’s evolving knowledge states from their learning history and a controlled text generation model that generates exercise sentences based on the student’s current estimated knowledge state and instructor requirements of desired properties (e.g., domain knowledge and difficulty). We train and evaluate our model on real-world learner interaction data from Duolingo and demonstrate that LMs guided by student states can generate superior exercises. Then, we discuss the potential use of our model in educational applications using various simulations. These simulations show that our model can adapt to students’ individual abilities and can facilitate their learning efficiency by personalizing learning sequences.
High-quality datasets are significant to the development of dialogue models. However, most existing datasets for open-domain dialogue modeling are limited to a single language. The absence of multilingual open-domain dialog datasets not only limits the research on multilingual or cross-lingual transfer learning, but also hinders the development of robust open-domain dialog systems that can be deployed in other parts of the world. In this paper, we provide a multilingual parallel open-domain dialog dataset, XDailyDialog, to enable researchers to explore the challenging task of multilingual and cross-lingual open-domain dialog. XDailyDialog includes 13K dialogues aligned across 4 languages (52K dialogues and 410K utterances in total). We then propose a dialog generation model, kNN-Chat, which has a novel kNN-search mechanism to support unified response retrieval for monolingual, multilingual, and cross-lingual dialogue. Experiment results show the effectiveness of this framework. We will make XDailyDialog and kNN-Chat publicly available soon.
Machine translation quality estimation (QE) predicts human judgements of a translation hypothesis without seeing the reference. State-of-the-art QE systems based on pretrained language models have been achieving remarkable correlations with human judgements yet they are computationally heavy and require human annotations, which are slow and expensive to create. To address these limitations, we define the problem of metric estimation (ME) where one predicts the automated metric scores also without the reference. We show that even without access to the reference, our model can estimate automated metrics (ρ = 60% for BLEU, ρ = 51% for other metrics) at the sentence-level. Because automated metrics correlate with human judgements, we can leverage the ME task for pre-training a QE model. For the QE task, we find that pre-training on TER is better (ρ = 23%) than training for scratch (ρ = 20%).
Designing dialog tutors has been challenging as it involves modeling the diverse and complex pedagogical strategies employed by human tutors. Although there have been significant recent advances in neural conversational systems using large language models and growth in available dialog corpora, dialog tutoring has largely remained unaffected by these advances. In this paper, we rigorously analyze various generative language models on two dialog tutoring datasets for language learning using automatic and human evaluations to understand the new opportunities brought by these advances as well as the challenges we must overcome to build models that would be usable in real educational settings. We find that although current approaches can model tutoring in constrained learning scenarios when the number of concepts to be taught and possible teacher strategies are small, they perform poorly in less constrained scenarios. Our human quality evaluation shows that both models and ground-truth annotations exhibit low performance in terms of equitable tutoring, which measures learning opportunities for students and how engaging the dialog is. To understand the behavior of our models in a real tutoring setting, we conduct a user study using expert annotators and find a significantly large number of model reasoning errors in 45% of conversations. Finally, we connect our findings to outline future work.
Tasks that model the relation between pairs of tokens in a string are a vital part of understanding natural language. Such tasks, in general, require exhaustive pair-wise comparisons of tokens, thus having a quadratic runtime complexity in the length of the string. We show that these exhaustive comparisons can be avoided, and, moreover, the complexity of such tasks can be reduced to linear by casting the relation between tokens as a partial order over the string. Our method predicts real numbers for each token in a string in parallel and sorts the tokens accordingly, resulting in total orders of the tokens in the string. Each total order implies a set of arcs oriented from smaller to greater tokens, sorted by their predicted numbers. The intersection of total orders results in a partial order over the set of tokens in the string, which is then decoded into a directed graph representing the desired linguistic structure. Our experiments on dependency parsing and coreference resolution show that our method achieves state-of-the-art or comparable performance. Moreover, the linear complexity and parallelism of our method double the speed of graph-based coreference resolution models, and bring a 10-times speed-up over graph-based dependency parsers.
Recent work has shown that language models (LMs) have strong multi-step (i.e., procedural) reasoning capabilities. However, it is unclear whether LMs perform these tasks by cheating with answers memorized from pretraining corpus, or, via a multi-step reasoning mechanism. In this paper, we try to answer this question by exploring a mechanistic interpretation of LMs for multi-step reasoning tasks. Concretely, we hypothesize that the LM implicitly embeds a reasoning tree resembling the correct reasoning process within it. We test this hypothesis by introducing a new probing approach (called MechanisticProbe) that recovers the reasoning tree from the model’s attention patterns. We use our probe to analyze two LMs: GPT-2 on a synthetic task (k-th smallest element), and LLaMA on two simple language-based reasoning tasks (ProofWriter & AI2 Reasoning Challenge). We show that MechanisticProbe is able to detect the information of the reasoning tree from the model’s attentions for most examples, suggesting that the LM indeed is going through a process of multi-step reasoning within its architecture in many cases.
In human-AI collaboration, users typically form a mental model of the AI system, which captures the user’s beliefs about when the system performs well and when it does not. The construction of this mental model is guided by both the system’s veracity as well as the system output presented to the user e.g., the system’s confidence and an explanation for the prediction. However, modern NLP systems are seldom calibrated and are often confidently incorrect about their predictions, which violates users’ mental model and erodes their trust. In this work, we design a study where users bet on the correctness of an NLP system, and use it to study the evolution of user trust as a response to these trust-eroding events and how the user trust is rebuilt as a function of time after these events. We find that even a few highly inaccurate confidence estimation instances are enough to damage users’ trust in the system and performance, which does not easily recover over time. We further find that users are more forgiving to the NLP system if it is unconfidently correct rather than confidently incorrect, even though, from a game-theoretic perspective, their payoff is equivalent. Finally, we find that each user can entertain multiple mental models of the system based on the type of the question. These results highlight the importance of confidence calibration in developing user-centered NLP applications to avoid damaging user trust and compromising the collaboration performance.
Mathematical reasoning in large language models (LMs) has garnered significant attention in recent work, but there is a limited understanding of how these models process and store information related to arithmetic tasks within their architecture. In order to improve our understanding of this aspect of language models, we present a mechanistic interpretation of Transformer-based LMs on arithmetic questions using a causal mediation analysis framework. By intervening on the activations of specific model components and measuring the resulting changes in predicted probabilities, we identify the subset of parameters responsible for specific predictions. This provides insights into how information related to arithmetic is processed by LMs. Our experimental results indicate that LMs process the input by transmitting the information relevant to the query from mid-sequence early layers to the final token using the attention mechanism. Then, this information is processed by a set of MLP modules, which generate result-related information that is incorporated into the residual stream. To assess the specificity of the observed activation dynamics, we compare the effects of different model components on arithmetic queries with other tasks, including number retrieval from prompts and factual knowledge questions.
Topic models help us make sense of large text collections. Automatically evaluating their output and determining the optimal number of topics are both longstanding challenges, with no effective automated solutions to date. This paper proposes using large language models (LLMs) for these tasks. We find that LLMs appropriately assess the resulting topics, correlating more strongly with human judgments than existing automated metrics. However, the setup of the evaluation task is crucial — LLMs perform better on coherence ratings of word sets than on intrustion detection. We find that LLMs can also assist us in guiding us towards a reasonable number of topics. In actual applications, topic models are typically used to answer a research question related to a collection of texts. We can incorporate this research question in the prompt to the LLM, which helps estimating the optimal number of topics.
Textbooks are one of the main mediums for delivering high-quality education to students. In particular, explanatory and illustrative visuals play a key role in retention, comprehension and general transfer of knowledge. However, many textbooks lack these interesting visuals to support student learning. In this paper, we investigate the effectiveness of vision-language models to automatically enhance textbooks with images from the web. We collect a dataset of e-textbooks in the math, science, social science and business domains. We then set up a text-image matching task that involves retrieving and appropriately assigning web images to textbooks, which we frame as a matching optimization problem. Through a crowd-sourced evaluation, we verify that (1) while the original textbook images are rated higher, automatically assigned ones are not far behind, and (2) the precise formulation of the optimization problem matters. We release the dataset of textbooks with an associated image bank to inspire further research in this intersectional area of computer vision and NLP for education.
Ontonotes has served as the most important benchmark for coreference resolution. However, for ease of annotation, several long documents in Ontonotes were split into smaller parts. In this work, we build a corpus of coreference-annotated documents of significantly longer length than what is currently available. We do so by providing an accurate, manually-curated, merging of annotations from documents that were split into multiple parts in the original Ontonotes annotation process. The resulting corpus, which we call LongtoNotes contains documents in multiple genres of the English language with varying lengths, the longest of which are up to 8x the length of documents in Ontonotes, and 2x those in Litbank.We evaluate state-of-the-art neural coreference systems on this new corpus, analyze the relationships between model architectures/hyperparameters and document length on performance and efficiency of the models, and demonstrate areas of improvement in long-document coreference modelling revealed by our new corpus.
Conversational tutoring systems (CTSs) aim to help students master educational material with natural language interaction in the form of a dialog. CTSs have become a key pillar in educational data mining research. A key challenge in CTSs is to engage the student in the conversation while exposing them to a diverse set of teaching strategies, akin to a human teacher, thereby, helping them learn in the process. Different from previous work that generates responses given the strategies as input, we propose to jointly predict teaching strategies and generate tutor responses accordingly, which fits a more realistic application scenario. We benchmark several competitive models on three dialog tutoring datasets and propose a unified framework that combines teaching response generation and pedagogical strategy prediction, where a self-distillation mechanism is adopted to guide the teaching strategy learning and facilitate tutor response generation. Our experiments and analyses shed light on how teaching strategies affect dialog tutoring.
Byte-Pair Encoding (BPE) is a popular algorithm used for tokenizing data in NLP, despite being devised initially as a compression method.BPE appears to be a greedy algorithm at face value, but the underlying optimization problem that BPE seeks to solve has not yet been laid down. We formalize BPE as a combinatorial optimization problem. Via submodular functions, we prove that the iterative greedy version is a 1/sigma*(1-e(-sigma))-approximation of an optimal merge sequence, where sigma is the total backward curvature with respect to the optimal merge sequence. Empirically the lower bound of the approximation is approx0.37.We provide a faster implementation of BPE which improves the runtime complexity from O(NM) to O(N log M), where N is the sequence length and M is the merge count. Finally, we optimize the brute-force algorithm for optimal BPE using memoization.
Step-by-step reasoning approaches like chain of thought (CoT) have proved to be very effective in inducing reasoning capabilities in large language models. However, the success of the CoT approach is fundamentally tied to the model size, and billion parameter-scale models are often needed to get CoT to work. In this paper, we propose a knowledge distillation approach that leverages the step-by-step CoT reasoning capabilities of larger models and distills these abilities into smaller models. In this work, we propose an alternative reasoning scheme, Socratic CoT that learns a decomposition of the original problem into a sequence of subproblems and uses it to guide the intermediate reasoning steps. We use Socratic CoT to train a combination of two small distilled models: a problem decomposer and a subproblem solver. In practice, given a new problem, the two distilled models work in sync to decompose and solve complex problems. On multiple reasoning datasets (GSM8K, StrategyQA, and SVAMP), our proposed distillation strategies boosts the performance of smaller models over 70% compared to the baselines. Finally, we investigate when Socratic CoT is an effective alternative to CoT, demonstrating cases where a much smaller model (GPT-2 large) can outperform a 10X larger model (GPT-3 6B). Our code is available: https://github.com/kumar-shridhar/Distiiling-LM.
Solving math story problems is a complex task for students and NLP models alike, requiring them to understand the world as described in the story and reason over it to compute an answer. Recent years have seen impressive performance on automatically solving these problems with large pre-trained language models and innovative techniques to prompt them. However, it remains unclear if these models possess accurate representations of mathematical concepts. This leads to lack of interpretability and trustworthiness which impedes their usefulness in various applications. In this paper, we consolidate previous work on categorizing and representing math story problems and develop MathWorld, which is a graph-based semantic formalism specific for the domain of math story problems. With MathWorld, we can assign world models to math story problems which represent the situations and actions introduced in the text and their mathematical relationships. We combine math story problems from several existing datasets and annotate a corpus of 1,019 problems and 3,204 logical forms with MathWorld. Using this data, we demonstrate the following use cases of MathWorld: (1) prompting language models with synthetically generated question-answer pairs to probe their reasoning and world modeling abilities, and (2) generating new problems by using the world models as a design space.
Membership Inference attacks (MIAs) aim to predict whether a data sample was present in the training data of a machine learning model or not, and are widely used for assessing the privacy risks of language models. Most existing attacks rely on the observation that models tend toassign higher probabilities to their training samples than non-training points. However, simple thresholding of the model score in isolation tends to lead to high false-positive rates as it does not account for the intrinsic complexity of a sample. Recent work has demonstrated that reference-based attacks which compare model scores to those obtained from a reference model trained on similar data can substantially improve the performance of MIAs.However, in order to train reference models, attacks of this kind make the strong and arguably unrealistic assumption that an adversary has access to samples closely resembling the original training data. Therefore, we investigate their performance in more realistic scenarios and find that they are highly fragile in relation to the data distribution used to train reference models. To investigate whether this fragility provides a layer of safety, we propose and evaluate neighbourhood attacks, which compare model scores for a given sample to scores of synthetically generated neighbour texts and therefore eliminate the need for access to the training data distribution. We show that, in addition to being competitive with reference-based attacks that have perfect knowledge about the training data distribution, our attack clearly outperforms existing reference-free attacks as well as reference-based attacks with imperfect knowledge, which demonstrates the need for a reevaluation of the threat model of adversarial attacks.
With the recent advances in natural language processing (NLP), a vast number of applications have emerged across various use cases. Among the plethora of NLP applications, many academic researchers are motivated to do work that has a positive social impact, in line with the recent initiatives of NLP for Social Good (NLP4SG). However, it is not always obvious to researchers how their research efforts are tackling today’s big social problems. Thus, in this paper, we introduce NLP4SGPapers, a scientific dataset with three associated tasks that can help identify NLP4SG papers and characterize the NLP4SG landscape by: (1) identifying the papers that address a social problem, (2) mapping them to the corresponding UN Sustainable Development Goals (SDGs), and (3) identifying the task they are solving and the methods they are using. Using state-of-the-art NLP models, we address each of these tasks and use them on the entire ACL Anthology, resulting in a visualization workspace that gives researchers a comprehensive overview of the field of NLP4SG. Our website is available at https://nlp4sg.vercel.app . We released our data at https://huggingface.co/datasets/feradauto/NLP4SGPapers and code at https://github.com/feradauto/nlp4sg
While automatic dialogue tutors hold great potential in making education personalized and more accessible, research on such systems has been hampered by a lack of sufficiently large and high-quality datasets. Collecting such datasets remains challenging, as recording tutoring sessions raises privacy concerns and crowdsourcing leads to insufficient data quality. To address this, we propose a framework to generate such dialogues by pairing human teachers with a Large Language Model (LLM) prompted to represent common student errors. We describe how we use this framework to collect MathDial, a dataset of 3k one-to-one teacher-student tutoring dialogues grounded in multi-step math reasoning problems. While models like GPT-3 are good problem solvers, they fail at tutoring because they generate factually incorrect feedback or are prone to revealing solutions to students too early. To overcome this, we let teachers provide learning opportunities to students by guiding them using various scaffolding questions according to a taxonomy of teacher moves. We demonstrate MathDial and its extensive annotations can be used to finetune models to be more effective tutors (and not just solvers). We confirm this by automatic and human evaluation, notably in an interactive setting that measures the trade-off between student solving success and telling solutions. The dataset is released publicly.
*Data Synthesis* is a promising way to train a small model with very little labeled data. One approach for data synthesis is to leverage the rich knowledge from large language models to synthesize pseudo training examples for small models, making it possible to achieve both data and compute efficiency at the same time. However, a key challenge in data synthesis is that the synthesized dataset often suffers from a large distributional discrepancy from the *real task* data distribution. Thus, in this paper, we propose *Synthesis Step by Step* (**S3**), a data synthesis framework that shrinks this distribution gap by iteratively extrapolating the errors made by a small model trained on the synthesized dataset on a small real-world validation dataset using a large language model. Extensive experiments on multiple NLP tasks show that our approach improves the performance of a small model by reducing the gap between the synthetic dataset and the real data, resulting in significant improvement compared to several baselines: 9.48% improvement compared to ZeroGen and 2.73% compared to GoldGen, and at most 15.17% improvement compared to the small model trained on human-annotated data.
Languages are continuously undergoing changes, and the mechanisms that underlie these changes are still a matter of debate. In this work, we approach language evolution through the lens of causality in order to model not only how various distributional factors associate with language change, but how they causally affect it. In particular, we study slang, which is an informal language that is typically restricted to a specific group or social setting. We analyze the semantic change and frequency shift of slang words and compare them to those of standard, nonslang words. With causal discovery and causal inference techniques, we measure the effect that word type (slang/nonslang) has on both semantic change and frequency shift, as well as its relationship to frequency, polysemy and part of speech. Our analysis provides some new insights in the study of language change, e.g., we show that slang words undergo less semantic change but tend to have larger frequency shifts over time.
Socratic questioning is an educational method that allows students to discover answers to complex problems by asking them a series of thoughtful questions. Generation of didactically sound questions is challenging, requiring understanding of the reasoning process involved in the problem. We hypothesize that such questioning strategy can not only enhance the human performance, but also assist the math word problem (MWP) solvers.In this work, we explore the ability of large language models (LMs) in generating sequential questions for guiding math word problem-solving. We propose various guided question generation schemes based on input conditioning and reinforcement learning.On both automatic and human quality evaluations, we find that LMs constrained with desirable question properties generate superior questions and improve the overall performance of a math word problem solver. We conduct a preliminary user study to examine the potential value of such question generation models in the education domain. Results suggest that the difficulty level of problems plays an important role in determining whether questioning improves or hinders human performance. We discuss the future of using such questioning strategies in education.
To protect the privacy of individuals whose data is being shared, it is of high importance to develop methods allowing researchers and companies to release textual data while providing formal privacy guarantees to its originators. In the field of NLP, substantial efforts have been directed at building mechanisms following the framework of local differential privacy, thereby anonymizing individual text samples before releasing them. In practice, these approaches are often dissatisfying in terms of the quality of their output language due to the strong noise required for local differential privacy. In this paper, we approach the problem at hand using global differential privacy, particularly by training a generative language model in a differentially private manner and consequently sampling data from it. Using natural language prompts and a new prompt-mismatch loss, we are able to create highly accurate and fluent textual datasets taking on specific desired attributes such as sentiment or topic and resembling statistical properties of the training data. We perform thorough experiments indicating that our synthetic datasets do not leak information from our original data and are of high language quality and highly suitable for training models for further analysis on real-world data. Notably, we also demonstrate that training classifiers on private synthetic data outperforms directly training classifiers with DP-SGD.
Recent work has demonstrated that pre-trained language models (PLMs) are zero-shot learners. However, most existing zero-shot methods involve heavy human engineering or complicated self-training pipelines, hindering their application to new situations. In this work, we show that zero-shot text classification can be improved simply by clustering texts in the embedding spaces of PLMs. Specifically, we fit the unlabeled texts with a Bayesian Gaussian Mixture Model after initializing cluster positions and shapes using class names. Despite its simplicity, this approach achieves superior or comparable performance on both topic and sentiment classification datasets and outperforms prior works significantly on unbalanced datasets. We further explore the applicability of our clustering approach by evaluating it on 14 datasets with more diverse topics, text lengths, and numbers of classes. Our approach achieves an average of 20% absolute improvement over prompt-based zero-shot learning. Finally, we compare different PLM embedding spaces and find that texts are well-clustered by topics even if the PLM is not explicitly pre-trained to generate meaningful sentence embeddings. This work indicates that PLM embeddings can categorize texts without task-specific fine-tuning, thus providing a new way to analyze and utilize their knowledge and zero-shot learning ability.
In typical machine learning systems, an estimate of the probability of the prediction is used to assess the system’s confidence in the prediction. This confidence measure is usually uncalibrated; i.e. the system’s confidence in the prediction does not match the true probability of the predicted output. In this paper, we present an investigation into calibrating open setting machine reading systemssuch as open-domain question answering and claim verification systems. We show that calibrating such complex systems which contain discrete retrieval and deep reading components is challenging and current calibration techniques fail to scale to these settings. We propose simple extensions to existing calibration approaches that allows us to adapt them to these settings. Our experimental results reveal that the approach works well, and can be useful to selectively predict answers when question answering systems are posed with unanswerable or out-of-the-training distribution questions.
In this paper, we present an approach to improve the robustness of BERT language models against word substitution-based adversarial attacks by leveraging adversarial perturbations for self-supervised contrastive learning. We create a word-level adversarial attack generating hard positives on-the-fly as adversarial examples during contrastive learning. In contrast to previous works, our method improves model robustness without using any labeled data. Experimental results show that our method improves robustness of BERT against four different word substitution-based adversarial attacks, and combining our method with adversarial training gives higher robustness than adversarial training alone. As our method improves the robustness of BERT purely with unlabeled data, it opens up the possibility of using large text datasets to train robust language models against word substitution-based adversarial attacks.
Recent years have seen a paradigm shift in NLP towards using pretrained language models (PLM) for a wide range of tasks. However, there are many difficult design decisions to represent structures (e.g. tagged text, coreference chains) in a way such that they can be captured by PLMs. Prior work on structured prediction with PLMs typically flattens the structured output into a sequence, which limits the quality of structural information being learned and leads to inferior performance compared to classic discriminative models. In this work, we describe an approach to model structures as sequences of actions in an autoregressive manner with PLMs, allowing in-structure dependencies to be learned without any loss. Our approach achieves the new state-of-the-art on all the structured prediction tasks we looked at, namely, named entity recognition, end-to-end relation extraction, and coreference resolution.
A number of knowledge integration (KI) methods have recently been proposed to incorporate external knowledge into pretrained language models (LMs). Even though knowledge-enhanced LMs (KELMs) outperform base LMs on knowledge-intensive tasks, the inner-workings of these KI methods are not well-understood. For instance, it is unclear which knowledge is effectively integrated into KELMs and which is not; and if such integration led to catastrophic forgetting of already learned knowledge. We show that existing model interpretation methods such as linear probes and prompts have some key limitations in answering these questions. Then, we revisit KI from an information-theoretic view and propose a new theoretically sound probe model called Graph Convolution Simulator (GCS) for KI interpretation. GCS is eventually quite simple – it uses graph attention on the corresponding knowledge graph for interpretation.We conduct various experiments to verify that GCS provides reasonable interpretation results for two well-known KELMs: ERNIE and K-Adapter. Our experiments reveal that only little knowledge is successfully integrated in these models, and simply increasing the size of the KI corpus may not lead to better KELMs.
Large language models appear to learn facts from the large text corpora they are trained on. Such facts are encoded implicitly within their many parameters, making it difficult to verify or manipulate what knowledge has been learned. Language models have recently been extended to multilingual language models (MLLMs), enabling knowledge to be learned across hundreds of languages. Meanwhile, knowledge graphs contain facts in an explicit triple format, which require careful and costly curation and are only available in a few high-resource languages, restricting their research and application. To address these issues, we propose to enhance MLLMs with knowledge from multilingual knowledge graphs (MLKGs) so as to tackle language and knowledge graph tasks across many languages, including low-resource ones. Specifically, we introducea lightweight adapter set to enhance MLLMs with cross-lingual entity alignment and facts from MLKGs for many languages. Experiments on common benchmarks show that such enhancement benefits both MLLMs and MLKGs, achieving: (1) comparable or improved performance for knowledge graph completion and entity alignment relative to baselines, especially for low-resource languages (for which knowledge graphs are unavailable); and (2) improved MLLM performance on language understanding tasks that require multilingual factual knowledge; all while maintaining performance on other general language tasks.
Reasoning is central to human intelligence. However, fallacious arguments are common, and some exacerbate problems such as spreading misinformation about climate change. In this paper, we propose the task of logical fallacy detection, and provide a new dataset (Logic) of logical fallacies generally found in text, together with an additional challenge set for detecting logical fallacies in climate change claims (LogicClimate). Detecting logical fallacies is a hard problem as the model must understand the underlying logical structure of the argument. We find that existing pretrained large language models perform poorly on this task. In contrast, we show that a simple structure-aware classifier outperforms the best language model by 5.46% F1 scores on Logic and 4.51% on LogicClimate. We encourage future work to explore this task since (a) it can serve as a new reasoning challenge for language models, and (b) it can have potential applications in tackling the spread of misinformation. Our dataset and code are available at https://github.com/causalNLP/logical-fallacy
Probing is a popular approach to understand what linguistic information is contained in the representations of pre-trained language models. However, the mechanism of selecting the probe model has recently been subject to intense debate, as it is not clear if the probes are merely extracting information or modelling the linguistic property themselves. To address this challenge, this paper introduces a novel model-free approach to probing via prompting, which formulates probing as a prompting task. We conduct experiments on five probing tasks and show that PP is comparable or better at extracting information than diagnostic probes while learning much less on its own. We further combine the probing via prompting approach with pruning to analyze where the model stores the linguistic information in its architecture. Finally, we apply the probing via prompting approach to examine the usefulness of a linguistic property for pre-training by removing the heads that are essential to it and evaluating the resulting model’s performance on language modeling.
Standard automatic metrics, e.g. BLEU, are not reliable for document-level MT evaluation. They can neither distinguish document-level improvements in translation quality from sentence-level ones, nor identify the discourse phenomena that cause context-agnostic translations. This paper introduces a novel automatic metric BlonDe to widen the scope of automatic MT evaluation from sentence to document level. BlonDe takes discourse coherence into consideration by categorizing discourse-related spans and calculating the similarity-based F1 measure of categorized spans. We conduct extensive comparisons on a newly constructed dataset BWB. The experimental results show that BlonDe possesses better selectivity and interpretability at the document-level, and is more sensitive to document-level nuances. In a large-scale human study, BlonDe also achieves significantly higher Pearson’s r correlation with human judgments compared to previous metrics.
Many natural language processing tasks, e.g., coreference resolution and semantic role labeling, require selecting text spans and making decisions about them. A typical approach to such tasks is to score all possible spans and greedily select spans for task-specific downstream processing. This approach, however, does not incorporate any inductive bias about what sort of spans ought to be selected, e.g., that selected spans tend to be syntactic constituents. In this paper, we propose a novel grammar-based structured span selection model which learns to make use of the partial span-level annotation provided for such problems. Compared to previous approaches, our approach gets rid of the heuristic greedy span selection scheme, allowing us to model the downstream task on an optimal set of spans. We evaluate our model on two popular span prediction tasks: coreference resolution and semantic role labeling; and show improvements on both.
Human-translated text displays distinct features from naturally written text in the same language. This phenomena, known as translationese, has been argued to confound the machine translation (MT) evaluation. Yet, we find that existing work on translationese neglects some important factors and the conclusions are mostly correlational but not causal. In this work, we collect CausalMT, a dataset where the MT training data are also labeled with the human translation directions. We inspect two critical factors, the train-test direction match (whether the human translation directions in the training and test sets are aligned), and data-model direction match (whether the model learns in the same direction as the human translation direction in the dataset). We show that these two factors have a large causal effect on the MT performance, in addition to the test-model direction mismatch highlighted by existing work on the impact of translationese. In light of our findings, we provide a set of suggestions for MT training and evaluation. Our code and data are at https://github.com/EdisonNi-hku/CausalMT
Labeled data for the task of Coreference Resolution is a scarce resource, requiring significant human effort. While state-of-the-art coreference models rely on such data, we propose an approach that leverages an end-to-end neural model in settings where labeled data is unavailable. Specifically, using weak supervision, we transfer the linguistic knowledge encoded by Stanford?s rule-based coreference system to the end-to-end model, which jointly learns rich, contextualized span representations and coreference chains. Our experiments on the English OntoNotes corpus demonstrate that our approach effectively benefits from the noisy coreference supervision, producing an improvement over Stanford?s rule-based system (+3.7 F1) and outperforming the previous best unsupervised model (+0.9 F1). Additionally, we validate the efficacy of our method on two other datasets: PreCo and Litbank (+2.5 and +5 F1 on Stanford’s system, respectively).
NLP has a rich history of representing our prior understanding of language in the form of graphs. Recent work on analyzing contextualized text representations has focused on hand-designed probe models to understand how and to what extent do these representations encode a particular linguistic phenomenon. However, due to the inter-dependence of various phenomena and randomness of training probe models, detecting how these representations encode the rich information in these linguistic graphs remains a challenging problem. In this paper, we propose a new information-theoretic probe, Bird’s Eye, which is a fairly simple probe method for detecting if and how these representations encode the information in these linguistic graphs. Instead of using model performance, our probe takes an information-theoretic view of probing and estimates the mutual information between the linguistic graph embedded in a continuous space and the contextualized word representations. Furthermore, we also propose an approach to use our probe to investigate localized linguistic information in the linguistic graphs using perturbation analysis. We call this probing setup Worm’s Eye. Using these probes, we analyze the BERT models on its ability to encode a syntactic and a semantic graph structure, and find that these models encode to some degree both syntactic as well as semantic information; albeit syntactic information to a greater extent.
Text-based games (TBGs) have emerged as useful benchmarks for evaluating progress at the intersection of grounded language understanding and reinforcement learning (RL). Recent work has proposed the use of external knowledge to improve the efficiency of RL agents for TBGs. In this paper, we posit that to act efficiently in TBGs, an agent must be able to track the state of the game while retrieving and using relevant commonsense knowledge. Thus, we propose an agent for TBGs that induces a graph representation of the game state and jointly grounds it with a graph of commonsense knowledge from ConceptNet. This combination is achieved through bidirectional knowledge graph attention between the two symbolic representations. We show that agents that incorporate commonsense into the game state graph outperform baseline agents.
The principle of independent causal mechanisms (ICM) states that generative processes of real world data consist of independent modules which do not influence or inform each other. While this idea has led to fruitful developments in the field of causal inference, it is not widely-known in the NLP community. In this work, we argue that the causal direction of the data collection process bears nontrivial implications that can explain a number of published NLP findings, such as differences in semi-supervised learning (SSL) and domain adaptation (DA) performance across different settings. We categorize common NLP tasks according to their causal direction and empirically assay the validity of the ICM principle for text data using minimum description length. We conduct an extensive meta-analysis of over 100 published SSL and 30 DA studies, and find that the results are consistent with our expectations based on causal insights. This work presents the first attempt to analyze the ICM principle in NLP, and provides constructive suggestions for future modeling choices.
When reading a literary piece, readers often make inferences about various characters’ roles, personalities, relationships, intents, actions, etc. While humans can readily draw upon their past experiences to build such a character-centric view of the narrative, understanding characters in narratives can be a challenging task for machines. To encourage research in this field of character-centric narrative understanding, we present LiSCU – a new dataset of literary pieces and their summaries paired with descriptions of characters that appear in them. We also introduce two new tasks on LiSCU: Character Identification and Character Description Generation. Our experiments with several pre-trained language models adapted for these tasks demonstrate that there is a need for better models of narrative comprehension.
Multi-head attention, a collection of several attention mechanisms that independently attend to different parts of the input, is the key ingredient in the Transformer. Recent work has shown, however, that a large proportion of the heads in a Transformer’s multi-head attention mechanism can be safely pruned away without significantly harming the performance of the model; such pruning leads to models that are noticeably smaller and faster in practice. Our work introduces a new head pruning technique that we term differentiable subset pruning. ntuitively, our method learns per- head importance variables and then enforces a user-specified hard constraint on the number of unpruned heads. he importance variables are learned via stochastic gradient descent. e conduct experiments on natural language inference and machine translation; we show that differentiable subset pruning performs comparably or better than previous works while offering precise control of the sparsity level.1
Knowledge graph (KG) representation learning techniques that learn continuous embeddings of entities and relations in the KG have become popular in many AI applications. With a large KG, the embeddings consume a large amount of storage and memory. This is problematic and prohibits the deployment of these techniques in many real world settings. Thus, we propose an approach that compresses the KG embedding layer by representing each entity in the KG as a vector of discrete codes and then composes the embeddings from these codes. The approach can be trained end-to-end with simple modifications to any existing KG embedding technique. We evaluate the approach on various standard KG embedding evaluations and show that it achieves 50-1000x compression of embeddings with a minor loss in performance. The compressed embeddings also retain the ability to perform various reasoning tasks such as KG inference.
To ensure readability, text is often written and presented with due formatting. These text formatting devices help the writer to effectively convey the narrative. At the same time, these help the readers pick up the structure of the discourse and comprehend the conveyed information. There have been a number of linguistic theories on discourse structure of text. However, these theories only consider unformatted text. Multimedia text contains rich formatting features that can be leveraged for various NLP tasks. In this article, we study some of these discourse features in multimedia text and what communicative function they fulfill in the context. As a case study, we use these features to harvest structured subject knowledge of geometry from textbooks. We conclude that the discourse and text layout features provide information that is complementary to lexical semantic information. Finally, we show that the harvested structured knowledge can be used to improve an existing solver for geometry problems, making it more accurate as well as more explainable.
We propose a simple modification to existing neural machine translation (NMT) models that enables using a single universal model to translate between multiple languages while allowing for language specific parameterization, and that can also be used for domain adaptation. Our approach requires no changes to the model architecture of a standard NMT system, but instead introduces a new component, the contextual parameter generator (CPG), that generates the parameters of the system (e.g., weights in a neural network). This parameter generator accepts source and target language embeddings as input, and generates the parameters for the encoder and the decoder, respectively. The rest of the model remains unchanged and is shared across all languages. We show how this simple modification enables the system to use monolingual data for training and also perform zero-shot translation. We further show it is able to surpass state-of-the-art performance for both the IWSLT-15 and IWSLT-17 datasets and that the learned language embeddings are able to uncover interesting relationships between languages.
Standardized tests have recently been proposed as replacements to the Turing test as a driver for progress in AI (Clark, 2015). These include tests on understanding passages and stories and answering questions about them (Richardson et al., 2013; Rajpurkar et al., 2016a, inter alia), science question answering (Schoenick et al., 2016, inter alia), algebra word problems (Kushman et al., 2014, inter alia), geometry problems (Seo et al., 2015; Sachan et al., 2016), visual question answering (Antol et al., 2015), etc. Many of these tests require sophisticated understanding of the world, aiming to push the boundaries of AI. For this tutorial, we broadly categorize these tests into two categories: open domain tests such as reading comprehensions and elementary school tests where the goal is to find the support for an answer from the student curriculum, and closed domain tests such as intermediate level math and science tests (algebra, geometry, Newtonian physics problems, etc.). Unlike open domain tests, closed domain tests require the system to have significant domain knowledge and reasoning capabilities. For example, geometry questions typically involve a number of geometry primitives (lines, quadrilaterals, circles, etc) and require students to use axioms and theorems of geometry (Pythagoras theorem, alternating angles, etc) to solve them. These closed domains often have a formal logical basis and the question can be mapped to a formal language by semantic parsing. The formal question representation can then provided as an input to an expert system to solve the question.
Building curious machines that can answer as well as ask questions is an important challenge for AI. The two tasks of question answering and question generation are usually tackled separately in the NLP literature. At the same time, both require significant amounts of supervised data which is hard to obtain in many domains. To alleviate these issues, we propose a self-training method for jointly learning to ask as well as answer questions, leveraging unlabeled text along with labeled question answer pairs for learning. We evaluate our approach on four benchmark datasets: SQUAD, MS MARCO, WikiQA and TrecQA, and show significant improvements over a number of established baselines on both question answering and question generation tasks. We also achieved new state-of-the-art results on two competitive answer sentence selection tasks: WikiQA and TrecQA.
Textbooks are rich sources of information. Harvesting structured knowledge from textbooks is a key challenge in many educational applications. As a case study, we present an approach for harvesting structured axiomatic knowledge from math textbooks. Our approach uses rich contextual and typographical features extracted from raw textbooks. It leverages the redundancy and shared ordering across multiple textbooks to further refine the harvested axioms. These axioms are then parsed into rules that are used to improve the state-of-the-art in solving geometry problems.
Humans as well as animals are good at imitation. Inspired by this, the learning by demonstration view of machine learning learns to perform a task from detailed example demonstrations. In this paper, we introduce the task of question answering using natural language demonstrations where the question answering system is provided with detailed demonstrative solutions to questions in natural language. As a case study, we explore the task of learning to solve geometry problems using demonstrative solutions available in textbooks. We collect a new dataset of demonstrative geometry solutions from textbooks and explore approaches that learn to interpret these demonstrations as well as to use these interpretations to solve geometry problems. Our approaches show improvements over the best previously published system for solving geometry problems.