The performance of Large Language Models (LLMs) is substantially influenced by the pretraining corpus, which consists of vast quantities of unsupervised data processed by the models. Despite its critical role in model performance, ensuring the quality of this data is challenging due to its sheer volume and the absence of sample-level quality annotations and enhancements. In this paper, we introduce DecorateLM, a data engineering method designed to refine the pretraining corpus through data rating, tagging and editing. Specifically, DecorateLM rates texts against quality criteria, tags texts with hierarchical labels, and edits texts into a more formalized format. Due to the massive size of the pretraining corpus, adopting an LLM for decorating the entire corpus is less efficient. Therefore, to balance performance with efficiency, we curate a meticulously annotated training corpus for DecorateLM using a large language model and distill data engineering expertise into a compact 1.2 billion parameter small language model (SLM). We then apply DecorateLM to enhance 100 billion tokens of the training corpus, selecting 45 billion tokens that exemplify high quality and diversity for the further training of another 1.2 billion parameter LLM. Our results demonstrate that employing such high-quality data can significantly boost model performance, showcasing a powerful approach to enhance the quality of the pretraining corpus.
Alignment in artificial intelligence pursues the consistency between model responses and human preferences as well as values. In practice, the multifaceted nature of human preferences inadvertently introduces what is known as the ”alignment tax”–a compromise where enhancements in alignment within one objective (e.g., harmlessness) can diminish performance in others (e.g., helpfulness). However, existing alignment techniques are mostly unidirectional, leading to suboptimal trade-offs and poor flexibility over various objectives. To navigate this challenge, we argue the prominence of grounding LLMs with evident preferences. We introduce controllable preference optimization (CPO), which explicitly specifies preference scores for different objectives, thereby guiding the model to generate responses that meet the requirements. Our experimental analysis reveals that the aligned models can provide responses that match various preferences among the ”3H” (helpfulness, honesty, harmlessness) desiderata. Furthermore, by introducing diverse data and alignment goals, we surpass baseline methods in aligning with single objectives, hence mitigating the impact of the alignment tax and achieving improvements in multi-objective alignment.
Chinese Spell Checking (CSC) aims to detect and correct spelling errors in sentences. Despite Large Language Models (LLMs) exhibit robust capabilities and are widely applied in various tasks, their performance on CSC is often unsatisfactory. We find that LLMs fail to meet the Chinese character-level constraints of the CSC task, namely equal length and phonetic similarity, leading to a performance bottleneck. Further analysis reveals that this issue stems from the granularity of tokenization, as current mixed character-word tokenization struggles to satisfy these character-level constraints. To address this issue, we propose C-LLM, a Large Language Model-based Chinese Spell Checking method that learns to check errors Character by Character. Character-level tokenization enables the model to learn character-level alignment, effectively mitigating issues related to character-level constraints. Furthermore, CSC is simplified to replication-dominated and substitution-supplemented tasks. Experiments on two CSC benchmarks demonstrate that C-LLM achieves a 2.1% enhancement in general scenarios and a significant 12% improvement in vertical domain scenarios compared to existing methods, establishing state-of-the-art performance.
Speech Relation Extraction (SpeechRE) aims to extract relation triplets from speech data. However, existing studies usually use synthetic speech to train and evaluate SpeechRE models, hindering the further development of SpeechRE due to the disparity between synthetic and real speech. Meanwhile, the modality gap issue, unexplored in SpeechRE, limits the performance of existing models. In this paper, we construct two real SpeechRE datasets to facilitate subsequent researches and propose a Multi-level Cross-modal Alignment Model (MCAM) for SpeechRE. Our model consists of three components: 1) a speech encoder, extracting speech features from the input speech; 2) an alignment adapter, mapping these speech features into a suitable semantic space for the text decoder; and 3) a text decoder, autoregressively generating relation triplets based on the speech features. During training, we first additionally introduce a text encoder to serve as a semantic bridge between the speech encoder and the text decoder, and then train the alignment adapter to align the output features of speech and text encoders at multiple levels. In this way, we can effectively train the alignment adapter to bridge the modality gap between the speech encoder and the text decoder. Experimental results and in-depth analysis on our datasets strongly demonstrate the efficacy of our method.
In the task of Knowledge Graph Completion (KGC), the existing datasets and their inherent subtasks carry a wealth of shared knowledge that can be utilized to enhance the representation of knowledge triplets and overall performance. However, no current studies specifically address the shared knowledge within KGC. To bridge this gap, we introduce a multi-level Shared Knowledge Guided learning method (SKG) that operates at both the dataset and task levels. On the dataset level, SKG-KGC broadens the original dataset by identifying shared features within entity sets via text summarization. On the task level, for the three typical KGC subtasks—head entity prediction, relation prediction, and tail entity prediction—we present an innovative multi-task learning architecture with dynamically adjusted loss weights. This approach allows the model to focus on more challenging and underperforming tasks, effectively mitigating the imbalance of knowledge sharing among subtasks. Experimental results demonstrate that SKG-KGC outperforms existing text-based methods significantly on three well-known datasets, with the most notable improvement on WN18RR (MRR: 66.6%→ 72.2%, Hit@1: 58.7%→67.0%).
Code generation aims to understand the problem description and generate corresponding code snippets, where existing works generally decompose such complex tasks into intermediate steps by prompting strategies, such as Chain-of-Thought and its variants. While these studies have achieved some success, their effectiveness is highly dependent on the capabilities of advanced Large Language Models (LLMs) such as GPT-4, particularly in terms of API calls, which significantly limits their practical applicability. Consequently, how to enhance the code generation capabilities of small and medium-scale code LLMs without significantly increasing training costs is an appealing challenge. In this paper, we suggest that code comments are the natural logic pivot between natural language and code language and propose using comments to boost the code generation ability of code LLMs. Concretely, we propose MANGO (comMents As Natural loGic pivOts), including a comment contrastive training strategy and a corresponding logical comment decoding strategy. Experiments are performed on HumanEval and MBPP, utilizing StarCoder and WizardCoder as backbone models, and encompassing model parameter sizes between 3B and 7B. The results indicate that MANGO significantly improves the code pass rate based on the strong baselines. Meanwhile, the robustness of the logical comment decoding strategy is notably higher than the Chain-of-thoughts prompting.
Multi-modal entity linking (MEL) is a challenging task that requires accurate prediction of entities within extensive search spaces, utilizing multi-modal contexts. Existing generative approaches struggle with the knowledge gap between visual entity information and the intrinsic parametric knowledge of LLMs. To address this knowledge gap, we introduce a novel approach called GELR, which incorporates a knowledge retriever to enhance visual entity information by leveraging external sources. Additionally, we devise a prioritization scheme that effectively handles noisy retrieval results and manages conflicts arising from the integration of external and internal knowledge. Moreover, we propose a noise-aware instruction tuning technique during training to finely adjust the model’s ability to leverage retrieved information effectively. Through extensive experiments conducted on three benchmarks, our approach showcases remarkable improvements, ranging from 3.0% to 6.5%, across all evaluation metrics compared to strong baselines. These results demonstrate the effectiveness and superiority of our proposed method in tackling the complexities of multi-modal entity linking.
Multilingual neural machine translation models generally distinguish translation directions by the language tag (LT) in front of the source or target sentences. However, current LT strategies cannot indicate the desired target language as expected on zero-shot translation, i.e., the off-target issue. Our analysis reveals that the indication of the target language is sensitive to the placement of the target LT. For example, when placing the target LT on the decoder side, the indication would rapidly degrade along with decoding steps, while placing the target LT on the encoder side would lead to copying or paraphrasing the source input. To address the above issues, we propose a simple yet effective strategy named Language Converter Strategy (LCS). By introducing the target language embedding into the top encoder layers, LCS mitigates confusion in the encoder and ensures stable language indication for the decoder. Experimental results on MultiUN, TED, and OPUS-100 datasets demonstrate that LCS could significantly mitigate the off-target issue, with language accuracy up to 95.28%, 96.21%, and 85.35% meanwhile outperforming the vanilla LT strategy by 3.07, 3,3, and 7.93 BLEU scores on zero-shot translation, respectively.
Recently, Knowledge Editing has received increasing attention, since it could update the specific knowledge from outdated ones in pretrained models without re-training. However, as pointed out by recent studies, existing related methods tend to merely memorize the superficial word composition of the edited knowledge, rather than truly learning and absorbing it. Consequently, on the reasoning questions, we discover that existing methods struggle to utilize the edited knowledge to reason the new answer, and tend to retain outdated responses, which are generated by the original models utilizing original knowledge. Nevertheless, the outdated responses are unexpected for the correct answers to reasoning questions, which we named as the outdated issue. To alleviate this issue, in this paper, we propose a simple yet effective decoding strategy, i.e., outDated ISsue aware deCOding (DISCO), to enhance the performance of edited models on reasoning questions. Specifically, we capture the difference in the probability distribution between the original and edited models. Further, we amplify the difference of the token prediction in the edited model to alleviate the outdated issue, and thus enhance the model performance w.r.t the edited knowledge. Experimental results suggest that applying DISCO could enhance edited models to reason, e.g., on reasoning questions, DISCO outperforms the prior SOTA method by 12.99 F1 scores, and reduces the ratio of the outdated issue to 5.78% on the zsRE dataset.
Large language models (LLMs) are capable of performing conditional sequence generation tasks, such as translation or summarization, through instruction fine-tuning. The fine-tuning data is generally sequentially concatenated from a specific task instruction, an input sentence, and the corresponding response. Considering the locality modeled by the self-attention mechanism of LLMs, these models face the risk of instruction forgetting when generating responses for long input sentences. To mitigate this issue, we propose enhancing the instruction-following capability of LLMs by shifting the position of task instructions after the input sentences. Theoretical analysis suggests that our straightforward method can alter the model’s learning focus, thereby emphasizing the training of instruction-following capabilities. Concurrently, experimental results demonstrate that our approach consistently outperforms traditional settings across various model scales (1B / 7B / 13B) and different sequence generation tasks (translation and summarization), without any additional data or annotation costs. Notably, our method significantly improves the zero-shot performance on conditional sequence generation, e.g., up to 9.7 BLEU points on WMT zero-shot translation tasks. Further analysis reveals that our method can significantly improve the tranditional model’s instruction following ability by 1x over traditional approch.
Recently, DeepNorm scales Transformers into extremely deep (i.e., 1000 layers) and reveals the promising potential of deep scaling. To stabilize the training of deep models, DeepNorm attempts to constrain the model update to a constant value. Although applying such a constraint can benefit the early stage of model training, it may lead to undertrained models during the whole training procedure. In this paper, we propose BranchNorm, which dynamically rescales the non-residual branch of Transformer in accordance with the training period. BranchNorm not only theoretically stabilizes the training with smooth gradient norms at the early stage, but also encourages better convergence in the subsequent training stage. Experimental results on multiple translation tasks demonstrate that BranchNorm achieves a better trade-off between training stability and converge performance.
Recent research has shown a weak correlation between n-gram-based metrics and human evaluations in machine translation task, particularly when evaluating large language models (LLMs). Additionally, the data leakage risk in LLMs may cause an overestimation problem when evaluating LLMs on downstream tasks. In this work, we identify the limited diversity of references as the primary cause for the inferior performance of n-gram-based metrics and the overestimation problem. To address this issue, we propose to utilize multiple references generated by LLMs, coupled with an effective selection strategy focused on accuracy and diversity, to improve the alignment between automatic metrics and human evaluations. We validate our approach on the WMT22 Metrics benchmark with 4 languages and observe a maximum accuracy gain of 9.5% in F200spBLEU, which makes it on par with computationally expensive neural-based metrics. We also show that using multi-reference with n-gram-based metrics significantly alleviates the overestimation problem when evaluating LLMs with data leakage. Further analysis explores the factors that affect the quality of generated references, offering insights into data synthesis by LLMs.
Contemporary translation engines based on the encoder-decoder framework have made significant strides in development.However, the emergence of Large Language Models (LLMs) has disrupted their position by presenting the potential for achieving superior translation quality.To uncover the circumstances in which LLMs excel and explore how their strengths can be harnessed to enhance translation quality,we first conduct a comprehensive analysis to assess the strengths and limitations of various commercial NMT systems and MT-oriented LLMs. Our findings indicate that neither NMT nor MT-oriented LLMs alone can effectively address all the translation issues, but MT-oriented LLMs show promise as a complementary solution to NMT systems.Building upon these insights, we propose Cooperative Decoding (CoDec), which treats NMT systems as a pretranslation model and MT-oriented LLMs as a supplemental solution to handle complex scenarios beyond the capability of NMT alone.Experimental results on the WMT22 test sets and a newly collected test set WebCrawl demonstrate the effectiveness and efficiency of CoDec, highlighting its potential as a robust solution for combining NMT systems with MT-oriented LLMs in the field of machine translation.
Aspect-based sentiment analysis (ABSA) is an important subtask of sentiment analysis, which aims to extract the aspects and predict their sentiments. Most existing studies focus on improving the performance of the target domain by fine-tuning domain-specific models (trained on source domains) based on the target domain dataset. Few works propose continual learning tasks for ABSA, which aim to learn the target domain’s ability while maintaining the history domains’ abilities. In this paper, we propose a Large Language Model-based Continual Learning (LLM-CL) model for ABSA. First, we design a domain knowledge decoupling module to learn a domain-invariant adapter and separate domain-variant adapters dependently with an orthogonal constraint. Then, we introduce a domain knowledge warmup strategy to align the representation between domain-invariant and domain-variant knowledge. In the test phase, we index the corresponding domain-variant knowledge via domain positioning to not require each sample’s domain ID. Extensive experiments over 19 datasets indicate that our LLM-CL model obtains new state-of-the-art performance.
Length extrapolation algorithms based on Rotary position embedding (RoPE) have shown promising results in extending the context length of language models. However, understanding how position embedding can capture longer-range contextual information remains elusive. Based on the intuition that different dimensions correspond to different frequency of changes in RoPE encoding, we conducted a dimension-level analysis to investigate the correlation between a hidden dimension of an attention head and its contribution to capturing long-distance dependencies. Using our correlation metric, we identified a particular type of attention heads, which we named Positional Heads, from various length-extrapolated models. These heads exhibit a strong focus on long-range information interaction and play a pivotal role in long input processing, as evidence by our ablation. We further demonstrate the correlation between the efficiency of length extrapolation and the extension of the high-dimensional attention allocation of these heads. The identification of Positional Heads provides insights for future research in long-text comprehension.
Byzantine-resistant aggregations detect poisonous clients and discard them to ensure that the global model is not poisoned or attacked by malicious clients. However, these aggregations are mainly conducted on the parameter space, and the parameter distances cannot reflect the data distribution divergences between clients. Therefore, existing Byzantine-resistant aggregations cannot defend against backdoor injection by malicious attackers in federated natural language tasks. In this paper, we propose the client embedding for malicious client detection to enhance Byzantine-resistant aggregations. The distances between client embeddings are required to reflect the data distribution divergences of the corresponding clients. Experimental results validate the effectiveness of the proposed client embeddings.
Though large language models (LLMs) achieve significant success in recent years, the hallucination issue remains a challenge, and numerous benchmarks are proposed for hallucination detection. Nevertheless, some of these benchmarks are not naturally generated by LLMs but are intentionally induced. Also, many merely focus on the factuality hallucination while ignoring the faithfulness hallucination. Additionally, although dialogue pattern is more widely utilized in the era of LLMs, current benchmarks only concentrate on sentence-level and passage-level hallucination. In this study, we propose DiaHalu, the first dedicated dialogue-level hallucination evaluation benchmark for LLMs to our knowledge. Initially, we integrate the collected topics into system prompts and facilitate a dialogue between two LLMs. Subsequently, we manually modify the contents that do not adhere to human language conventions and then have LLMs re-generate, simulating authentic human-machine interaction scenarios. Finally, professional scholars annotate all the samples in the dataset. DiaHalu covers four common multi-turn dialogue domains and five hallucination subtypes, extended from factuality and faithfulness hallucination. Experiments through some well-known LLMs and detection methods on the dataset show that DiaHalu is a challenging benchmark, holding significant value for further research.
Factual inconsistencies pose a significant hurdle for the faithful summarization by generative models. While a major direction to enhance inconsistency detection is to derive stronger Natural Language Inference (NLI) models, we propose an orthogonal aspect that underscores the importance of incorporating task-specific taxonomy into the inference. To this end, we consolidate key error types of inconsistent facts in summaries, and incorporate them to facilitate both the zero-shot and supervised paradigms of LLMs. Extensive experiments on ten datasets of five distinct domains suggest that, zero-shot LLM inference could benefit from the explicit solution space depicted by the error type taxonomy, and achieves state-of-the-art performance overall, surpassing specialized non-LLM baselines, as well as recent LLM baselines. We further distill models that fuse the taxonomy into parameters through our designed prompt completions and supervised training strategies, efficiently substituting state-of-the-art zero-shot inference with much larger LLMs.
Large language models are successful in answering factoid questions but are also prone to hallucination.We investigate the phenomenon of LLMs possessing correct answer knowledge yet still hallucinating from the perspective of inference dynamics, an area not previously covered in studies on hallucinations.We are able to conduct this analysis via two key ideas.First, we identify the factual questions that query the same triplet knowledge but result in different answers. The difference between the model behaviors on the correct and incorrect outputs hence suggests the patterns when hallucinations happen.Second, to measure the pattern, we utilize mappings from the residual streams to vocabulary space.We reveal the different dynamics of the output token probabilities along the depths of layers between the correct and hallucinated cases. In hallucinated cases, the output token’s information rarely demonstrates abrupt increases and consistent superiority in the later stages of the model.Leveraging the dynamic curve as a feature, we build a classifier capable of accurately detecting hallucinatory predictions with an 88% success rate. Our study shed light on understanding the reasons for LLMs’ hallucinations on their known facts, and more importantly, on accurately predicting when they are hallucinating.
Active learning (AL), which aims to construct an effective training set by iteratively curating the most formative unlabeled data for annotation, has been widely used in low-resource tasks. Most active learning techniques in classification rely on the model’s uncertainty or disagreement to choose unlabeled data, suffering from the problem of over-confidence in superficial patterns and a lack of exploration.Inspired by the cognitive processes in which humans deduce and predict through causal information, we take an initial attempt towards integrating rationales into AL and propose a novel Explainable Active Learning framework (XAL) for low-resource text classification, which aims to encourage classifiers to justify their inferences and delve into unlabeled data for which they cannot provide reasonable explanations. Specifically, besides using a pre-trained bi-directional encoder for classification, we employ a pre-trained uni-directional decoder to generate and score the explanation. We further facilitate the alignment of the model with human reasoning preference through a proposed ranking loss. During the selection of unlabeled data, the predicted uncertainty of the encoder and the explanation score of the decoder complement each other as the final metric to acquire informative data. Extensive experiments on six datasets show that XAL achieves consistent improvement over 9 strong baselines. Analysis indicates that the proposed method can generate corresponding explanations for its predictions.
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by incorporating additional information from retrieval. However, studies have shown that LLMs still face challenges in effectively using the retrieved information, even ignore it or be misled by it. The key reason is that the training of LLMs does not clearly make LLMs learn how to utilize input retrieved texts with varied quality. In this paper, we propose a novel perspective that considers the role of LLMs in RAG as “Information Refiner”, which means that regardless of correctness, completeness, or usefulness of retrieved texts, LLMs can consistently integrate knowledge within the retrieved texts and model parameters to generate the texts that are more concise, accurate, and complete than the retrieved texts. To this end, we propose an information refinement training method named INFO-RAG that optimizes LLMs for RAG in an unsupervised manner. INFO-RAG is low-cost and general across various tasks. Extensive experiments on zero-shot prediction of 11 datasets in diverse tasks including Question Answering, Slot-Filling, Language Modeling, Dialogue, and Code Generation show that INFO-RAG improves the performance of LLaMA2 by an average of 9.39% relative points. INFO-RAG also shows advantages in in-context learning and robustness of RAG.
In this paper, we present CSCD-NS, the first Chinese spelling check (CSC) dataset designed for native speakers, containing 40,000 samples from a Chinese social platform. Compared with existing CSC datasets aimed at Chinese learners, CSCD-NS is ten times larger in scale and exhibits a distinct error distribution, with a significantly higher proportion of word-level errors. To further enhance the data resource, we propose a novel method that simulates the input process through an input method, generating large-scale and high-quality pseudo data that closely resembles the actual error distribution and outperforms existing methods. Moreover, we investigate the performance of various models in this scenario, including large language models (LLMs), such as ChatGPT. The result indicates that generative models underperform BERT-like classification models due to strict length and pronunciation constraints. The high prevalence of word-level errors also makes CSC for native speakers challenging enough, leaving substantial room for improvement.
Current language model-driven agents often lack mechanisms for effective user participation, which is crucial given the vagueness commonly found in user instructions. Although adept at devising strategies and performing tasks, these agents struggle with seeking clarification and grasping precise user intentions. To bridge this gap, we introduce Intention-in-Interaction (IN3), a novel benchmark designed to inspect users’ implicit intentions through explicit queries. Next, we propose the incorporation of model experts as the upstream in agent designs to enhance user-agent interaction. Employing IN3, we empirically train Mistral-Interact, a powerful model that proactively assesses task vagueness, inquires about user intentions, and refines them into actionable goals before starting downstream agent task execution. Integrating it into the XAgent framework, we comprehensively evaluate the enhanced agent system regarding user instruction understanding and execution, revealing that our approach notably excels at identifying vague user tasks, recovering and summarizing critical missing information, setting precise and necessary agent execution goals, and minimizing redundant tool usage, thus boosting overall efficiency.
Neural Machine Translation (NMT) has made remarkable progress over the past years. However, under-translation and over-translation remain two challenging problems in state-of-the-art NMT systems. In this work, we conduct an in-depth analysis on the underlying cause of under-translation in NMT, providing an explanation from the perspective of decoding objective. To optimize the beam search objective, the model tends to overlook words it is less confident about, leading to the under-translation phenomenon. Correspondingly, the model’s confidence in predicting the End Of Sentence (EOS) diminishes when under-translation occurs, serving as a mild penalty for under-translated candidates. Building upon this analysis, we propose employing the confidence of predicting EOS as a detector for under-translation, and strengthening the confidence-based penalty to penalize candidates with a high risk of under-translation.Experiments on both synthetic and real-world data show that our method can accurately detect and rectify under-translated outputs, with minor impact on other correct translations.
Understanding events in texts is a core objective of natural language understanding, which requires detecting event occurrences, extracting event arguments, and analyzing inter-event relationships. However, due to the annotation challenges brought by task complexity, a large-scale dataset covering the full process of event understanding has long been absent. In this paper, we introduce MAVEN-Arg, which augments MAVEN datasets with event argument annotations, making the first all-in-one dataset supporting event detection, event argument extraction (EAE), and event relation extraction. As an EAE benchmark, MAVEN-Arg offers three main advantages: (1) a comprehensive schema covering 162 event types and 612 argument roles, all with expert-written definitions and examples; (2) a large data scale, containing 98,591 events and 290,613 arguments obtained with laborious human annotation; (3) the exhaustive annotation supporting all task variants of EAE, which annotates both entity and non-entity event arguments in document level. Experiments indicate that MAVEN-Arg is quite challenging for both fine-tuned EAE models and proprietary large language models (LLMs). Furthermore, to demonstrate the benefits of an all-in-one dataset, we preliminarily explore a potential application, future event prediction, with LLMs. MAVEN-Arg and codes can be obtained from https://github.com/THU-KEG/MAVEN-Argument.
This work introduces an original and practical paradigm for narrative comprehension, stemming from the characteristics that individual passages within narratives tend to be more cohesively related than isolated.Complementary to the common end-to-end paradigm, we propose a fine-grained modeling of narrative context, by formulating a graph dubbed NarCo, which explicitly depicts task-agnostic coherence dependencies that are ready to be consumed by various downstream tasks. In particular, edges in NarCo encompass free-form retrospective questions between context snippets, inspired by human cognitive perception that constantly reinstates relevant events from prior context. Importantly, our graph formalism is practically instantiated by LLMs without human annotations, through our designed two-stage prompting scheme.To examine the graph properties and its utility, we conduct three studies in narratives, each from a unique angle: edge relation efficacy, local context enrichment, and broader application in QA. All tasks could benefit from the explicit coherence captured by NarCo.
Large language models (LLMs) have exhibited remarkable performance in various natural language processing tasks. Techniques like instruction tuning have effectively enhanced the proficiency of LLMs in the downstream task of machine translation. However, the existing approaches fail to yield satisfactory translation outputs that match the quality of supervised neural machine translation (NMT) systems. One plausible explanation for this discrepancy is that the straightforward prompts employed in these methodologies are unable to fully exploit the acquired instruction-following capabilities. To this end, we propose the TasTe framework, which stands for translating through self-reflection. The self-reflection process includes two stages of inference. In the first stage, LLMs are instructed to generate preliminary translations and conduct self-assessments on these translations simultaneously. In the second stage, LLMs are tasked to refine these preliminary translations according to the evaluation results. The evaluation results in four language directions on the WMT22 benchmark reveal the effectiveness of our approach compared to existing methods. Our work presents a promising approach to unleash the potential of LLMs and enhance their capabilities in MT. The codes and datasets are open-sourced at https://github.com/YutongWang1216/ReflectionLLMMT.
Incrementally expanding the capability of an existing translation model to solve new domain tasks over time is a fundamental and practical problem, which usually suffers from catastrophic forgetting. Generally, multi-domain learning can be seen as a good solution. However, there are two drawbacks: 1) it requires having the training data for all domains available at the same time, which may be unrealistic due to storage or privacy concerns; 2) it requires re-training the model on the data of all domains from scratch when adding a new domain and this is time-consuming and computationally expensive. To address these issues, we present a semi-supervised contrastive distillation framework for incremental neural machine translation. Specifically, to avoid catastrophic forgetting, we propose to exploit unlabeled data from the same distributions of the older domains through knowledge distillation. Further, to ensure the distinct domain characteristics in the model as the number of domains increases, we devise a cross-domain contrastive objective to enhance the distilled knowledge. Extensive experiments on domain translation benchmarks show that our approach, without accessing any previous training data or re-training on all domains from scratch, can significantly prevent the model from forgetting previously learned knowledge while obtaining good performance on the incrementally added domains. The code and data with step-by-step instructions will be released upon acceptance.
Pinyin input method engine (IME) refers to the transformation tool from pinyin sequence to Chinese characters, which is widely used on mobile phone applications. Due to the homophones, Pinyin IME suffers from the one-to-many mapping problem in the process of pinyin sequences to Chinese characters. To solve the above issue, this paper makes the first exploration to leverage an effective conditional variational mechanism (CVM) for pinyin IME. However, to ensure the stable and smooth operation of Pinyin IME under low-resource conditions (e.g., on offline mobile devices), we should balance diversity, accuracy, and efficiency with CVM, which is still challenging. To this end, we employ a novel strategy that simplifies the complexity of semantic encoding by facilitating the interaction between pinyin and the Chinese character information during the construction of continuous latent variables. Concurrently, the accuracy of the outcomes is enhanced by capitalizing on the discrete latent variables. Experimental results demonstrate the superior performance of our method.
Evaluation is pivotal for honing Large Language Models (LLMs), pinpointing their capabilities and guiding enhancements. The rapid development of LLMs calls for a lightweight and easy-to-use framework for swift evaluation deployment. However, due to the various implementation details to consider, developing a comprehensive evaluation platform is never easy. Existing platforms are often complex and poorly modularized, hindering seamless incorporation into researcher’s workflows. This paper introduces UltraEval, a user-friendly evaluation framework characterized by lightweight, comprehensiveness, modularity, and efficiency. We identify and reimplement three core components of model evaluation (models, data, and metrics). The resulting composability allows for the free combination of different models, tasks, prompts, and metrics within a unified evaluation workflow. Additionally, UltraEval supports diverse models owing to a unified HTTP service and provides sufficient inference acceleration.
Information extraction (IE) aims to extract complex structured information from the text. Numerous datasets have been constructed for various IE tasks, leading to time-consuming and labor-intensive data annotations. Nevertheless, most prevailing methods focus on training task-specific models, while the common knowledge among different IE tasks is not explicitly modeled. Moreover, the same phrase may have inconsistent labels in different tasks, which poses a big challenge for knowledge transfer using a unified model. In this study, we propose a regularization-based transfer learning method for IE (TIE) via an instructed graph decoder. Specifically, we first construct an instruction pool for datasets from all well-known IE tasks, and then present an instructed graph decoder, which decodes various complex structures into a graph uniformly based on corresponding instructions. In this way, the common knowledge shared with existing datasets can be learned and transferred to a new dataset with new labels. Furthermore, to alleviate the label inconsistency problem among various IE tasks, we introduce a task-specific regularization strategy, which does not update the gradients of two tasks with ‘opposite direction’. We conduct extensive experiments on 12 datasets spanning four IE tasks, and the results demonstrate the great advantages of our proposed method.
Minimum Bayesian Risk Decoding (MBR) emerges as a promising decoding algorithm in Neural Machine Translation. However, MBR performs poorly with label smoothing, which is surprising as label smoothing provides decent improvement with beam search and improves generality in various tasks. In this work, we show that the issue arises from the inconsistency of label smoothing on the token-level and sequence-level distributions. We demonstrate that even though label smoothing only causes a slight change in the token level, the sequence-level distribution is highly skewed. We coin the issue autoregressive over-smoothness. To address this issue, we propose a simple and effective method, Distributional Cooling MBR (DC-MBR), which manipulates the entropy of output distributions by tuning down the Softmax temperature. We theoretically prove the equivalence between the pre-tuning label smoothing factor and distributional cooling. Extensive experiments on NMT benchmarks validate that distributional cooling improves MBR in various settings.
Domain adaption has been widely adapted for cross-domain sentiment analysis to transfer knowledge from the source domain to the target domain. Whereas, most methods are proposed under the assumption that the target (test) domain is known, making them fail to generalize well on unknown test data that is not always available in practice. In this paper, we focus on the problem of domain generalization for cross-domain sentiment analysis. Specifically, we propose a backdoor adjustment-based causal model to disentangle the domain-specific and domain-invariant representations that play essential roles in tackling domain shift. First, we rethink the cross-domain sentiment analysis task in a causal view to model the causal-and-effect relationships among different variables. Then, to learn an invariant feature representation, we remove the effect of domain confounders (e.g., domain knowledge) using the backdoor adjustment. A series of experiments over many homologous and diverse datasets show the great performance and robustness of our model by comparing it with the state-of-the-art domain generalization baselines.
Gradient-based explanation methods are increasingly used to interpret neural models in natural language processing (NLP) due to their high fidelity. Such methods determine word-level importance using dimension-level gradient values through a norm function, often presuming equal significance for all gradient dimensions. However, in the context of Aspect-based Sentiment Analysis (ABSA), our preliminary research suggests that only specific dimensions are pertinent. To address this, we propose the Information Bottleneck-based Gradient (IBG) explanation framework for ABSA. This framework leverages an information bottleneck to refine word embeddings into a concise intrinsic dimension, maintaining essential features and omitting unrelated information. Comprehensive tests show that our IBG approach considerably improves both the models’ performance and the explanations’ clarity by identifying sentiment-aware features.
Aspect-Based Sentiment Analysis (ABSA) stands as a crucial task in predicting the sentiment polarity associated with identified aspects within text. However, a notable challenge in ABSA lies in precisely determining the aspects’ boundaries (start and end indices), especially for long ones, due to users’ colloquial expressions. We propose DiffusionABSA, a novel diffusion model tailored for ABSA, which extracts the aspects progressively step by step. Particularly, DiffusionABSA gradually adds noise to the aspect terms in the training process, subsequently learning a denoising process that progressively restores these terms in a reverse manner. To estimate the boundaries, we design a denoising neural network enhanced by a syntax-aware temporal attention mechanism to chronologically capture the interplay between aspects and surrounding text. Empirical evaluations conducted on eight benchmark datasets underscore the compelling advantages offered by DiffusionABSA when compared against robust baseline models. Our code is publicly available at https://github.com/Qlb6x/DiffusionABSA.
Prior research in Image Machine Translation (IMT) has focused on either translating the source image solely into the target language text or exclusively into the target image. As a result, the former approach lacked the capacity to generate target images, while the latter was insufficient in producing target text. In this paper, we present a Unified Multimodal Text Image Translation (UMTIT) model that not only translates text images into the target language but also generates consistent target images. The UMTIT model consists of two image-text modality conversion steps: the first step converts images to text to recognize the source text and generate translations, while the second step transforms text to images to create target images based on the translations. Due to the limited availability of public datasets, we have constructed two multimodal image translation datasets. Experimental results show that our UMTIT model is versatile enough to handle tasks across multiple modalities and outperforms previous methods. Notably, UMTIT surpasses the state-of-the-art TrOCR in text recognition tasks, achieving a lower Character Error Rate (CER); it also outperforms cascading methods in text translation tasks, obtaining a higher BLEU score; and, most importantly, UMTIT can generate high-quality target text images.
Existing neural models have difficulty generalizing to unseen combinations of seen components. To achieve compositional generalization, models are required to consistently interpret (sub)expressions across contexts. Without modifying model architectures, we improve the capability of Transformer on compositional generalization through consistency regularization training, which promotes representation consistency across samples and prediction consistency for a single sample. Experimental results on semantic parsing and machine translation benchmarks empirically demonstrate the effectiveness and generality of our method. In addition, we find that the prediction consistency scores on in-distribution validation sets can be an alternative for evaluating models during training, when commonly-used metrics are not informative.
The goal of multimodal abstractive summarization (MAS) is to produce a concise summary given the multimodal data (text and vision). Existing studies on MAS mainly focus on how to effectively use the extracted visual features, having achieved impressive success on the high-resource English dataset. However, less attention has been paid to the quality of the visual features to the summary, which may limit the model performance, especially in the low- and zero-resource scenarios. In this paper, we propose to improve the summary quality through summary-oriented visual features. To this end, we devise two auxiliary tasks including vision to summary task and masked image modeling task. Together with the main summarization task, we optimize the MAS model via the training objectives of all these tasks. By these means, the MAS model can be enhanced by capturing the summary-oriented visual features, thereby yielding more accurate summaries. Experiments on 44 languages, covering mid-high-, low-, and zero-resource scenarios, verify the effectiveness and superiority of the proposed approach, which achieves state-of-the-art performance under all scenarios. Additionally, we will contribute a large-scale multilingual multimodal abstractive summarization (MM-Sum) dataset to the research community.
Multilingual pre-trained language models have demonstrated impressive (zero-shot) cross-lingual transfer abilities, however, their performance is hindered when the target language has distant typologyfrom the source language or when pre-training data is limited in size. In this paper, we propose XLM-P, a method that contextually retrieves prompts as flexible guidance for encoding instances conditionally. Our space-efficient and model-agnostic XLM-P approach enables (1) lightweight modeling of language-invariant and language-specific knowledge across languages, and (2) easy integration with other multilingual pre-training methods. On the tasks of XTREME, which include text classification, sequence labeling, question answering, and sentence retrieval, both base- and large-size language models pre-trained with our proposed method exhibit consistent performance improvement. Furthermore, it provides substantial advantages for low-resource languages in unsupervised sentence retrieval and for target languages that differ greatly from the source language in cross-lingual transfer.
Long-form question answering (LFQA) aims at answering complex, open-ended questions with detailed, paragraph-length responses. The de facto paradigm of LFQA necessitates two procedures: information retrieval, which searches for relevant supporting facts, and information synthesis, which integrates these facts into a coherent answer. In this paper, we introduce WebCPM, the first Chinese LFQA dataset. One unique feature of WebCPM is that its information retrieval is based on interactive web search, which engages with a search engine in real time. Following WebGPT, we develop a web search interface. We recruit annotators to search for relevant information using our interface and then answer questions. Meanwhile, the web search behaviors of our annotators would be recorded. In total, we collect 5,500 high-quality question-answer pairs, together with 15,372 supporting facts and 125,954 web search actions. We fine-tune pre-trained language models to imitate human behaviors for web search and to generate answers based on the collected facts. Our LFQA pipeline, built on these fine-tuned models, generates answers that are no worse than human-written ones in 32.5% and 47.5% of the cases on our dataset and DuReader, respectively. The interface, dataset, and codes are publicly available at https://github.com/thunlp/WebCPM.
Injecting external knowledge can improve the performance of pre-trained language models (PLMs) on various downstream NLP tasks. However, massive retraining is required to deploy new knowledge injection methods or knowledge bases for downstream tasks. In this work, we are the first to study how to improve the flexibility and efficiency of knowledge injection by reusing existing downstream models. To this end, we explore a new paradigm plug-and-play knowledge injection, where knowledge bases are injected into frozen existing downstream models by a knowledge plugin. Correspondingly, we propose a plug-and-play injection method map-tuning, which trains a mapping of knowledge embeddings to enrich model inputs with mapped embeddings while keeping model parameters frozen. Experimental results on three knowledge-driven NLP tasks show that existing injection methods are not suitable for the new paradigm, while map-tuning effectively improves the performance of downstream models. Moreover, we show that a frozen downstream model can be well adapted to different domains with different mapping networks of domain knowledge. Our code and models are available at https://github.com/THUNLP/Knowledge-Plugin.
Comprehending characters’ personalities is a crucial aspect of story reading. As readers engage with a story, their understanding of a character evolves based on new events and information; and multiple fine-grained aspects of personalities can be perceived. This leads to a natural problem of situated and fine-grained personality understanding. The problem has not been studied in the NLP field, primarily due to the lack of appropriate datasets mimicking the process of book reading. We present the first labeled dataset PersoNet for this problem. Our novel annotation strategy involves annotating user notes from online reading apps as a proxy for the original books. Experiments and human studies indicate that our dataset construction is both efficient and accurate; and our task heavily relies on long-term context to achieve accurate predictions for both machines and humans.
To adapt text summarization to the multilingual world, previous work proposes multi-lingual summarization (MLS) and cross-lingual summarization (CLS). However, these two tasks have been studied separately due to the different definitions, which limits the compatible and systematic research on both of them. In this paper, we aim to unify MLS and CLS into a more general setting, i.e., many-to-many summarization (M2MS), where a single model could process documents in any language and generate their summaries also in any language. As the first step towards M2MS, we conduct preliminary studies to show that M2MS can better transfer task knowledge across different languages than MLS and CLS. Furthermore, we propose Pisces, a pre-trained M2MS model that learns language modeling, cross-lingual ability and summarization ability via three-stage pre-training. Experimental results indicate that our Pisces significantly outperforms the state-of-the-art baselines, especially in the zero-shot directions, where there is no training data from the source-language documents to the target-language summaries.
Human conversations contain natural and reasonable topic shifts, reflected as the concept flows across utterances. Previous researches prove that explicitly modeling concept flows with a large commonsense knowledge graph effectively improves response quality. However, we argue that there exists a gap between the knowledge graph and the conversation. The knowledge graph has limited commonsense knowledge and ignores the characteristics of natural conversations. Thus, many concepts and relations in conversations are not included. To bridge this gap, we propose to enhance dialogue generation with conversational concept flows. Specifically, we extract abundant concepts and relations from natural conversations and build a new conversation-aware knowledge graph. In addition, we design a novel relation-aware graph encoder to capture the concept flows guided by the knowledge graph. Experimental results on the large-scale Reddit conversation dataset indicate that our method performs better than strong baselines, andfurther analysis verifies the effectiveness of each component. All our code and data will be publicly available after acceptance.
Pretrained language models have achieved remarkable success in various natural language processing tasks. However, pretraining has recently shifted toward larger models and larger data, which has resulted in significant computational and energy costs. In this paper, we propose Influence Subset Selection (ISS) for language model, which explicitly utilizes end-task knowledge to select a tiny subset of the pretraining corpus. Specifically, the ISS selects the samples that will provide the most positive influence on the performance of the end task. Furthermore, we design a gradient matching-based influence estimation method, which can drastically reduce the computation time of influence. With only 0.45% of the data and a three-orders-of-magnitude lower computational cost, ISS outperformed pretrained models (e.g., RoBERTa) on eight datasets covering four domains.
Existing models for named entity recognition (NER) are mainly based on large-scale labeled datasets, which always obtain using crowdsourcing. However, it is hard to obtain a unified and correct label via majority voting from multiple annotators for NER due to the large labeling space and complexity of this task. To address this problem, we aim to utilize the original multi-annotator labels directly. Particularly, we propose a CONfidence-based partial Label Learning (CONLL) method to integrate the prior confidence (given by annotators) and posterior confidences (learned by models) for crowd-annotated NER. This model learns a token- and content-dependent confidence via an Expectation–Maximization (EM) algorithm by minimizing empirical risk. The true posterior estimator and confidence estimator perform iteratively to update the true posterior and confidence respectively. We conduct extensive experimental results on both real-world and synthetic datasets, which show that our model can improve performance effectively compared with strong baselines.
Word-level Quality Estimation (QE) of Machine Translation (MT) aims to detect potential translation errors in the translated sentence without reference. Typically, conventional works on word-level QE are usually designed to predict the quality of translated words in terms of the post-editing effort, where the word labels in the dataset, i.e., OK or BAD, are automatically generated by comparing words between MT sentences and the post-edited sentences through a Translation Error Rate (TER) toolkit. While the post-editing effort can be used to measure the translation quality to some extent, we find it usually conflicts with human judgment on whether the word is well or poorly translated. To investigate this conflict, we first create a golden benchmark dataset, namely HJQE (Human Judgement on Quality Estimation), where the source and MT sentences are identical to the original TER-based dataset and the expert translators directly annotate the poorly translated words on their judgments. Based on our analysis, we further propose two tag-correcting strategies which can make the TER-based artificial QE corpus closer to HJQE. We conduct substantial experiments based on the publicly available WMT En-De and En-Zh corpora. The results not only show our proposed dataset is more consistent with human judgment but also confirm the effectiveness of the proposed tag-correcting strategies.For reviewers, the corpora and codes can be found in the attached files.
Pre-trained Language Models (PLMs) may be poisonous with backdoors or bias injected by the suspicious attacker during the fine-tuning process. A core challenge of purifying potentially poisonous PLMs is precisely finding poisonous dimensions. To settle this issue, we propose the Fine-purifying approach, which utilizes the diffusion theory to study the dynamic process of fine-tuning for finding potentially poisonous dimensions. According to the relationship between parameter drifts and Hessians of different dimensions, we can detect poisonous dimensions with abnormal dynamics, purify them by resetting them to clean pre-trained weights, and then fine-tune the purified weights on a small clean dataset. To the best of our knowledge, we are the first to study the dynamics guided by the diffusion theory for safety or defense purposes. Experimental results validate the effectiveness of Fine-purifying even with a small clean dataset.
This work examines the presence of modularity in pre-trained Transformers, a feature commonly found in human brains and thought to be vital for general intelligence. In analogy to human brains, we consider two main characteristics of modularity: (1) functional specialization of neurons: we evaluate whether each neuron is mainly specialized in a certain function, and find that the answer is yes. (2) function-based neuron grouping: we explore to find a structure that groups neurons into modules by function, and each module works for its corresponding function. Given the enormous amount of possible structures, we focus on Mixture-of-Experts as a promising candidate, which partitions neurons into experts and usually activates different experts for different inputs. Experimental results show that there are functional experts, where clustered are the neurons specialized in a certain function. Moreover, perturbing the activations of functional experts significantly affects the corresponding function. Finally, we study how modularity emerges during pre-training, and find that the modular structure is stabilized at the early stage, which is faster than neuron stabilization. It suggests that Transformer first constructs the modular structure and then learns fine-grained neuron functions. Our code and data are available at https://github.com/THUNLP/modularity-analysis.
We focus on dialogue reading comprehension (DRC) that extracts answers from dialogues. Compared to standard RC tasks, DRC has raised challenges because of the complex speaker information and noisy dialogue context. Essentially, the challenges come from the speaker-centric nature of dialogue utterances — an utterance is usually insufficient in its surface form, but requires to incorporate the role of its speaker and the dialogue context to fill the latent pragmatic and intention information. We propose to deal with these problems in two folds. First, we propose a new key-utterances-extracting method, which can realize more answer-contained utterances. Second, based on the extracted utterances, we then propose a Question-Interlocutor Scope Realized Graph (QuISG). QuISG involves the question and question-mentioning speaker as nodes. To realize interlocutor scopes, utterances are connected with corresponding speakers in the dialogue. Experiments on the benchmarks show that our method achieves state-of-the-art performance against previous works.
Parameter-efficient tuning methods (PETs) have achieved promising results in tuning large pre-trained language models (PLMs). By formalizing frozen PLMs and additional tunable parameters as systems and controls respectively, PETs can be theoretically grounded to optimal control and further viewed as optimizing the terminal cost and running cost in the optimal control literature. Despite the elegance of this theoretical grounding, in practice, existing PETs often ignore the running cost and only optimize the terminal cost, i.e., focus on optimizing the loss function of the output state, regardless of the running cost that depends on the intermediate states. Since it is non-trivial to directly model the intermediate states and design a running cost function, we propose to use latent stochastic bridges to regularize the intermediate states and use the regularization as the running cost of PETs. As the first work to propose regularized PETs that use stochastic bridges as the regularizers (running costs) for the intermediate states, we show the effectiveness and generality of this regularization across different tasks, PLMs and PETs. In view of the great potential and capacity, we believe more sophisticated regularizers can be designed for PETs and better performance can be achieved in the future.
Continual pre-training is the paradigm where pre-trained language models (PLMs) continually acquire fresh knowledge from growing data and gradually get upgraded. Before an upgraded PLM is released, we may have tuned the original PLM for various tasks and stored the adapted weights. However, when tuning the upgraded PLM, these outdated adapted weights will typically be ignored and discarded, causing a potential waste of resources. We bring this issue to the forefront and contend that proper algorithms for recycling outdated adapted weights should be developed. To this end, we formulate the task of recyclable tuning for continual pre-training. In pilot studies, we find that after continual pre-training, the upgraded PLM remains compatible with the outdated adapted weights to some extent. Motivated by this finding, we analyze the connection between continually pre-trained PLMs from two novel aspects, i.e., mode connectivity, and functional similarity. Based on the corresponding findings, we propose both an initialization-based method and a distillation-based method for our task. We demonstrate their feasibility in improving the convergence and performance for tuning the upgraded PLM. We also show that both methods can be combined to achieve better performance.
Multilingual vision-language (V&L) pre-training has achieved remarkable progress in learning universal representations across different modalities and languages. In spite of recent success, there still remain challenges limiting further improvements of V&L pre-trained models in multilingual settings. Particularly, current V&L pre-training methods rely heavily on strictly-aligned multilingual image-text pairs generated from English-centric datasets through machine translation. However, the cost of collecting and translating such strictly-aligned datasets is usually unbearable. In this paper, we propose Regularized Contrastive Cross-lingual Cross-modal (RC3) pre-training, which further exploits more abundant weakly-aligned multilingual image-text pairs. Specifically, we design a regularized cross-lingual visio-textual contrastive learning objective that constrains the representation proximity of weakly-aligned visio-textual inputs according to textual relevance. Besides, existing V&L pre-training approaches mainly deal with visual inputs by either region-of-interest (ROI) features or patch embeddings. We flexibly integrate the two forms of visual features into our model for pre-training and downstream multi-modal tasks. Extensive experiments on 5 downstream multi-modal tasks across 6 languages demonstrate the effectiveness of our proposed method over competitive contrast models with strong zero-shot capability.
Recently, Target-oriented Multimodal Sentiment Classification (TMSC) has gained significant attention among scholars. However, current multimodal models have reached a performance bottleneck. To investigate the causes of this problem, we perform extensive empirical evaluation and in-depth analysis of the datasets to answer the following questions: **Q1**: Are the modalities equally important for TMSC? **Q2**: Which multimodal fusion modules are more effective? **Q3**: Do existing datasets adequately support the research? Our experiments and analyses reveal that the current TMSC systems primarily rely on the textual modality, as most of targets’ sentiments can be determined *solely* by text. Consequently, we point out several directions to work on for the TMSC task in terms of model design and dataset construction. The code and data can be found in https://github.com/Junjie-Ye/RethinkingTMSC.
Given a document in a source language, cross-lingual summarization (CLS) aims at generating a concise summary in a different target language. Unlike monolingual summarization (MS), naturally occurring source-language documents paired with target-language summaries are rare. To collect large-scale CLS data, existing datasets typically involve translation in their creation. However, the translated text is distinguished from the text originally written in that language, i.e., translationese. In this paper, we first confirm that different approaches of constructing CLS datasets will lead to different degrees of translationese. Then we systematically investigate how translationese affects CLS model evaluation and performance when it appears in source documents or target summaries. In detail, we find that (1) the translationese in documents or summaries of test sets might lead to the discrepancy between human judgment and automatic evaluation; (2) the translationese in training sets would harm model performance in real-world applications; (3) though machine-translated documents involve translationese, they are very useful for building CLS systems on low-resource languages under specific training strategies. Lastly, we give suggestions for future CLS research including dataset and model developments. We hope that our work could let researchers notice the phenomenon of translationese in CLS and take it into account in the future.
Argument structure extraction (ASE) aims to identify the discourse structure of arguments within documents. Previous research has demonstrated that contextual information is crucial for developing an effective ASE model. However, we observe that merely concatenating sentences in a contextual window does not fully utilize contextual information and can sometimes lead to excessive attention on less informative sentences. To tackle this challenge, we propose an Efficient Context-aware ASE model (ECASE) that fully exploits contextual information by enhancing modeling capacity and augmenting training data. Specifically, we introduce a sequence-attention module and distance-weighted similarity loss to aggregate contextual information and argumentative information. Additionally, we augment the training data by randomly masking discourse markers and sentences, which reduces the model’s reliance on specific words or less informative sentences. Our experiments on five datasets from various domains demonstrate that our model achieves state-of-the-art performance. Furthermore, ablation studies confirm the effectiveness of each module in our model.
Large language models (LLMs) have achieved remarkable results on NLP tasks but at the expense of huge parameter sizes and the consequent computational costs. In this paper, we propose Variator, a parameter-efficient acceleration method that enhances computational efficiency through plug-and-play compression plugins. Compression plugins are designed to reduce the sequence length via compressing multiple hidden vectors into one and trained with original LLMs frozen. Different from traditional model acceleration methods, which compress LLMs to smaller sizes, Variator offers two distinct advantages: (1) In real-world applications, the plug-and-play nature of our compression plugins enables dynamic selection of different compression plugins with varying acceleration ratios based on the current workload. (2) The compression plugin comprises a few compact neural network layers with minimal parameters, significantly saving storage and memory overhead, particularly in scenarios with a growing number of tasks. We validate the effectiveness of Variator on seven datasets. Experimental results show that Variator can save 53% computational costs using only 0.9% additional parameters with a performance drop of less than 2%. Moreover, when the model scales to billions of parameters, Variator matches the strong performance of uncompressed LLMs. Our code and checkpoints will be released to facilitate future work.
Parameter-shared pre-trained language models (PLMs) have emerged as a successful approach in resource-constrained environments, enabling substantial reductions in model storage and memory costs without significant performance compromise. However, it is important to note that parameter sharing does not alleviate computational burdens associated with inference, thus impeding its practicality in situations characterized by limited stringent latency requirements or computational resources. Building upon neural ordinary differential equations (ODEs), we introduce a straightforward technique to enhance the inference efficiency of parameter-shared PLMs. Additionally, we propose a simple pre-training technique that leads to fully or partially shared models capable of achieving even greater inference acceleration. The experimental results demonstrate the effectiveness of our methods on both autoregressive and autoencoding PLMs, providing novel insights into more efficient utilization of parameter-shared models in resource-constrained settings.
Many-to-many multimodal summarization (M3S) task aims to generate summaries in any language with document inputs in any language and the corresponding image sequence, which essentially comprises of multimodal monolingual summarization (MMS) and multimodal cross-lingual summarization (MXLS) tasks. Although much work has been devoted to either MMS or MXLS, little research pays attention to the M3S task. Besides, existing studies mainly focus on 1) utilizing MMS to enhance MXLS via knowledge distillation without considering the performance of MMS or 2) improving MMS models by filtering summary-unrelated visual features with implicit learning or explicitly complex training objectives. In this paper, we first introduce a general and practical task, i.e., M3S. Further, we propose a dual knowledge distillation and target-oriented vision modeling framework for the M3S task. Specifically, the dual knowledge distillation method guarantees that the knowledge of MMS and MXLS can be transferred to each other and thus mutually prompt both of them. To offer target-oriented visual features, a simple yet effective target-oriented contrastive objective is designed and responsible for discarding needless visual information. Extensive experiments on the many-to-many setting show the effectiveness of the proposed approach. Additionally, we contribute a many-to-many multimodal summarization (lmttM3Sum) dataset with 44 languages to facilitate future research.
Few-shot relation extraction (FSRE) aims to train a model that can deal with new relations using only a few labeled examples. Most existing studies employ Prototypical Networks for FSRE, which usually overfits the relation classes in the training set and cannot generalize well to unseen relations. By investigating the class separation of an FSRE model, we find that model upper layers are prone to learn relation-specific knowledge. Therefore, in this paper, we propose a HyperNetwork-based Decoupling approach to improve the generalization of FSRE models. Specifically, our model consists of an encoder, a network generator (for producing relation classifiers) and the produced-then-finetuned classifiers for every N-way-K-shot episode. Meanwhile, we design a two-step training framework along with a class-agnostic aligner, in which the generated classifiers focus on acquiring relation-specific knowledge and the encoder is encouraged to learn more general relation knowledge. In this way, the roles of upper and lower layers in an FSRE model are explicitly decoupled, thus enhancing its generalizing capability during testing. Experiments on two public datasets demonstrate the effectiveness of our method.
In-context learning (ICL) emerges as a promising capability of large language models (LLMs) by providing them with demonstration examples to perform diverse tasks. However, the underlying mechanism of how LLMs learn from the provided context remains under-explored. In this paper, we investigate the working mechanism of ICL through an information flow lens. Our findings reveal that label words in the demonstration examples function as anchors: (1) semantic information aggregates into label word representations during the shallow computation layers’ processing; (2) the consolidated information in label words serves as a reference for LLMs’ final predictions. Based on these insights, we introduce an anchor re-weighting method to improve ICL performance, a demonstration compression technique to expedite inference, and an analysis framework for diagnosing ICL errors in GPT2-XL. The promising applications of our findings again validate the uncovered ICL working mechanism and pave the way for future studies.
Pre-training on large-scale open-domain dialogue data can substantially improve the performance of dialogue models. However, the pre-trained dialogue model’s ability to utilize long-range context is limited due to the scarcity of long-turn dialogue sessions. Most dialogues in existing pre-training corpora contain fewer than three turns of dialogue. To alleviate this issue, we propose the Retrieve, Reorganize and Rescale framework (Re3Dial), which can automatically construct billion-scale long-turn dialogues by reorganizing existing short-turn ones. Given a short-turn session, Re3Dial first employs a session retriever to retrieve coherent consecutive sessions. To this end, we train the retriever to capture semantic and discourse relations within multi-turn dialogues through contrastive training. Next, Re3Dial samples a session from retrieved results following a diversity sampling strategy, which is designed to penalize repetitive or generic sessions. A longer session is then derived by concatenating the original session and the sampled session. By repeating the above process, Re3Dial can yield a coherent long-turn dialogue. Extensive experiments on multiple multi-turn dialogue benchmarks demonstrate that Re3Dial significantly improves the dialogue model’s ability to utilize long-range context and thus generate more sensible and informative responses. Finally, we build a toolkit for efficiently rescaling conversations with Re3Dial, which enables us to construct a corpus containing 1B Chinese dialogue sessions with 11.3 turns on average (5X longer than the original corpus). We will release our retriever model, toolkit, and data for public use.
Dialogue comprehension and generation are vital to the success of open-domain dialogue systems. Although pre-trained generative conversation models have made significant progress in generating fluent responses, people have difficulty judging whether they understand and efficiently model the contextual information of the conversation. In this study, we propose a Multi-Source Probing (MSP) method to probe the dialogue comprehension abilities of open-domain dialogue models. MSP aggregates features from multiple sources to accomplish diverse task goals and conducts downstream tasks in a generative manner that is consistent with dialogue model pre-training to leverage model capabilities. We conduct probing experiments on seven tasks that require various dialogue comprehension skills, based on the internal representations encoded by dialogue models. Experimental results show that open-domain dialogue models can encode semantic information in the intermediate hidden states, which facilitates dialogue comprehension tasks. Models of different scales and structures possess different conversational understanding capabilities. Our findings encourage a comprehensive evaluation and design of open-domain dialogue models.
Within Open Relation Extraction (ORE) tasks, the Zero-shot ORE method is to generalize undefined relations from predefined relations, while the Unsupervised ORE method is to extract undefined relations without the need for annotations. However, despite the possibility of overlap between predefined and undefined relations in the training data, a unified framework for both Zero-shot and Unsupervised ORE has yet to be established. To address this gap, we propose U-CORE: A Unified Deep Cluster-wise Contrastive Framework for both Zero-shot and Unsupervised ORE, by leveraging techniques from Contrastive Learning (CL) and Clustering.1 U-CORE overcomes the limitations of CL-based Zero-shot ORE methods by employing Cluster-wise CL that preserves both local smoothness as well as global semantics. Additionally, we employ a deep-cluster-based updater that optimizes the cluster center, thus enhancing the accuracy and efficiency of the model. To increase the stability of the model, we adopt Adaptive Self-paced Learning that effectively addresses the data-shifting problems. Experimental results on three well-known datasets demonstrate that U-CORE significantly improves upon existing methods by showing an average improvement of 7.35% ARI on Zero-shot ORE tasks and 15.24% ARI on Unsupervised ORE tasks.
Recently, the emergence of ChatGPT has attracted wide attention from the computational linguistics community. Many prior studies have shown that ChatGPT achieves remarkable performance on various NLP tasks in terms of automatic evaluation metrics. However, the ability of ChatGPT to serve as an evaluation metric is still underexplored. Considering assessing the quality of natural language generation (NLG) models is an arduous task and NLG metrics notoriously show their poor correlation with human judgments, we wonder whether ChatGPT is a good NLG evaluation metric. In this report, we provide a preliminary meta-evaluation on ChatGPT to show its reliability as an NLG metric. In detail, we regard ChatGPT as a human evaluator and give task-specific (e.g., summarization) and aspect-specific (e.g., relevance) instruction to prompt ChatGPT to evaluate the generated results of NLG models. We conduct experiments on five NLG meta-evaluation datasets (including summarization, story generation and data-to-text tasks). Experimental results show that compared with previous automatic metrics, ChatGPT achieves state-of-the-art or competitive correlation with human judgments in most cases. In addition, we find that the effectiveness of the ChatGPT evaluator might be influenced by the creation method of the meta-evaluation datasets. For the meta-evaluation datasets which are created greatly depending on the reference and thus are biased, the ChatGPT evaluator might lose its effectiveness. We hope our preliminary study could prompt the emergence of a general-purposed reliable NLG metric.
Given a document in a source language, cross-lingual summarization (CLS) aims to generate a summary in a different target language. Recently, the emergence of Large Language Models (LLMs), such as GPT-3.5, ChatGPT and GPT-4, has attracted wide attention from the computational linguistics community. However, it is not yet known the performance of LLMs on CLS. In this report, we empirically use various prompts to guide LLMs to perform zero-shot CLS from different paradigms (i.e., end-to-end and pipeline), and provide a preliminary evaluation on the generated summaries. We find that ChatGPT and GPT-4 originally prefer to produce lengthy summaries with detailed information. These two LLMs can further balance informativeness and conciseness with the help of an interactive prompt, significantly improving their CLS performance. Experimental results on three widely-used CLS datasets show that GPT-4 achieves state-of-the-art zero-shot CLS performance, and performs competitively compared with the fine-tuned mBART-50. Moreover, we also find some multi-lingual and bilingual LLMs (i.e., BLOOMZ, ChatGLM-6B, Vicuna-13B and ChatYuan) have limited zero-shot CLS ability. Due to the composite nature of CLS, which requires models to perform summarization and translation simultaneously, accomplishing this task in a zero-shot manner is even a challenge for LLMs. Therefore, we sincerely hope and recommend future LLM research could use CLS as a testbed.
Recent explorations of large-scale pre-trained language models (PLMs) have revealed the power of PLMs with huge amounts of parameters, setting off a wave of training ever-larger PLMs. However, it requires tremendous computational resources to train a large-scale PLM, which may be practically unaffordable. In addition, existing large-scale PLMs are mainly trained from scratch individually, ignoring that many well-trained PLMs are available. To this end, we explore the question how could existing PLMs benefit training large-scale PLMs in future. Specifically, we introduce a pre-training framework named “knowledge inheritance” (KI) and explore how could knowledge distillation serve as auxiliary supervision during pre-training to efficiently learn larger PLMs. Experimental results demonstrate the superiority of KI in training efficiency. We also conduct empirical analyses to explore the effects of teacher PLMs’ pre-training settings, including model architecture, pre-training data, etc. Finally, we show that KI could be applied to domain adaptation and knowledge transfer.
Prompt tuning (PT) is a promising parameter-efficient method to utilize extremely large pre-trained language models (PLMs), which can achieve comparable performance to full-parameter fine-tuning by only tuning a few soft prompts. However, PT requires much more training time than fine-tuning. Intuitively, knowledge transfer can help to improve the efficiency. To explore whether we can improve PT via prompt transfer, we empirically investigate the transferability of soft prompts across different downstream tasks and PLMs in this work. We find that (1) in zero-shot setting, trained soft prompts can effectively transfer to similar tasks on the same PLM and also to other PLMs with a cross-model projector trained on similar tasks; (2) when used as initialization, trained soft prompts of similar tasks and projected prompts of other PLMs can significantly accelerate training and also improve the performance of PT. Moreover, to explore what decides prompt transferability, we investigate various transferability indicators and find that the overlapping rate of activated neurons strongly reflects the transferability, which suggests how the prompts stimulate PLMs is essential. Our findings show that prompt transfer is promising for improving PT, and further research shall focus more on prompts’ stimulation to PLMs. The source code can be obtained from https://github.com/thunlp/Prompt-Transferability.
Self-augmentation has received increasing research interest recently to improve named entity recognition (NER) performance in low-resource scenarios. Token substitution and mixup are two feasible heterogeneous self-augmentation techniques for NER that can achieve effective performance with certain specialized efforts. Noticeably, self-augmentation may introduce potentially noisy augmented data. Prior research has mainly resorted to heuristic rule-based constraints to reduce the noise for specific self-augmentation methods individually. In this paper, we revisit these two typical self-augmentation methods for NER, and propose a unified meta-reweighting strategy for them to achieve a natural integration. Our method is easily extensible, imposing little effort on a specific self-augmentation method. Experiments on different Chinese and English NER benchmarks show that our token substitution and mixup method, as well as their integration, can achieve effective performance improvement. Based on the meta-reweighting mechanism, we can enhance the advantages of the self-augmentation techniques without much extra effort.
Generating adversarial examples for Neural Machine Translation (NMT) with single Round-Trip Translation (RTT) has achieved promising results by releasing the meaning-preserving restriction. However, a potential pitfall for this approach is that we cannot decide whether the generated examples are adversarial to the target NMT model or the auxiliary backward one, as the reconstruction error through the RTT can be related to either. To remedy this problem, we propose a new definition for NMT adversarial examples based on the Doubly Round-Trip Translation (DRTT). Specifically, apart from the source-target-source RTT, we also consider the target-source-target one, which is utilized to pick out the authentic adversarial examples for the target NMT model. Additionally, to enhance the robustness of the NMT model, we introduce the masked language models to construct bilingual adversarial pairs based on DRTT, which are used to train the NMT model directly. Extensive experiments on both the clean and noisy test sets (including the artificial and natural noise) show that our approach substantially improves the robustness of NMT models.
Recent studies on the lottery ticket hypothesis (LTH) show that pre-trained language models (PLMs) like BERT contain matching subnetworks that have similar transfer learning performance as the original PLM. These subnetworks are found using magnitude-based pruning. In this paper, we find that the BERT subnetworks have even more potential than these studies have shown. Firstly, we discover that the success of magnitude pruning can be attributed to the preserved pre-training performance, which correlates with the downstream transferability. Inspired by this, we propose to directly optimize the subnetwork structure towards the pre-training objectives, which can better preserve the pre-training performance. Specifically, we train binary masks over model weights on the pre-training tasks, with the aim of preserving the universal transferability of the subnetwork, which is agnostic to any specific downstream tasks. We then fine-tune the subnetworks on the GLUE benchmark and the SQuAD dataset. The results show that, compared with magnitude pruning, mask training can effectively find BERT subnetworks with improved overall performance on downstream tasks. Moreover, our method is also more efficient in searching subnetworks and more advantageous when fine-tuning within a certain range of data scarcity. Our code is available at https://github.com/llyx97/TAMT.
Large-scale pretrained language models have achieved SOTA results on NLP tasks. However, they have been shown vulnerable to adversarial attacks especially for logographic languages like Chinese. In this work, we propose RoCBert: a pretrained Chinese Bert that is robust to various forms of adversarial attacks like word perturbation, synonyms, typos, etc. It is pretrained with the contrastive learning objective which maximizes the label consistency under different synthesized adversarial examples. The model takes as input multimodal information including the semantic, phonetic and visual features. We show all these features areimportant to the model robustness since the attack can be performed in all the three forms. Across 5 Chinese NLU tasks, RoCBert outperforms strong baselines under three blackbox adversarial algorithms without sacrificing the performance on clean testset. It also performs the best in the toxic content detection task under human-made attacks.
Fine-grained Entity Typing (FET) has made great progress based on distant supervision but still suffers from label noise. Existing FET noise learning methods rely on prediction distributions in an instance-independent manner, which causes the problem of confirmation bias. In this work, we propose a clustering-based loss correction framework named Feature Cluster Loss Correction (FCLC), to address these two problems. FCLC first train a coarse backbone model as a feature extractor and noise estimator. Loss correction is then applied to each feature cluster, learning directly from the noisy labels. Experimental results on three public datasets show that FCLC achieves the best performance over existing competitive systems. Auxiliary experiments further demonstrate that FCLC is stable to hyperparameters and it does help mitigate confirmation bias. We also find that in the extreme case of no clean data, the FCLC framework still achieves competitive performance.
The goal of the cross-lingual summarization (CLS) is to convert a document in one language (e.g., English) to a summary in another one (e.g., Chinese). The CLS task is essentially the combination of machine translation (MT) and monolingual summarization (MS), and thus there exists the hierarchical relationship between MT&MS and CLS. Existing studies on CLS mainly focus on utilizing pipeline methods or jointly training an end-to-end model through an auxiliary MT or MS objective. However, it is very challenging for the model to directly conduct CLS as it requires both the abilities to translate and summarize. To address this issue, we propose a hierarchical model for the CLS task, based on the conditional variational auto-encoder. The hierarchical model contains two kinds of latent variables at the local and global levels, respectively. At the local level, there are two latent variables, one for translation and the other for summarization. As for the global level, there is another latent variable for cross-lingual summarization conditioned on the two local-level variables. Experiments on two language directions (English-Chinese) verify the effectiveness and superiority of the proposed approach. In addition, we show that our model is able to generate better cross-lingual summaries than comparison models in the few-shot setting.
Existing reference-free metrics have obvious limitations for evaluating controlled text generation models. Unsupervised metrics can only provide a task-agnostic evaluation result which correlates weakly with human judgments, whereas supervised ones may overfit task-specific data with poor generalization ability to other datasets. In this paper, we propose an unsupervised reference-free metric called CTRLEval, which evaluates controlled text generation from different aspects by formulating each aspect into multiple text infilling tasks. On top of these tasks, the metric assembles the generation probabilities from a pre-trained language model without any model training. Experimental results show that our metric has higher correlations with human judgments than other baselines, while obtaining better generalization of evaluating generated texts from different models and with different qualities.
Token-level adaptive training approaches can alleviate the token imbalance problem and thus improve neural machine translation, through re-weighting the losses of different target tokens based on specific statistical metrics (e.g., token frequency or mutual information). Given that standard translation models make predictions on the condition of previous target contexts, we argue that the above statistical metrics ignore target context information and may assign inappropriate weights to target tokens. While one possible solution is to directly take target contexts into these statistical metrics, the target-context-aware statistical computing is extremely expensive, and the corresponding storage overhead is unrealistic. To solve the above issues, we propose a target-context-aware metric, named conditional bilingual mutual information (CBMI), which makes it feasible to supplement target context information for statistical metrics. Particularly, our CBMI can be formalized as the log quotient of the translation model probability and language model probability by decomposing the conditional joint distribution. Thus CBMI can be efficiently calculated during model training without any pre-specific statistical calculations and large storage overhead. Furthermore, we propose an effective adaptive training approach based on both the token- and sentence-level CBMI. Experimental results on WMT14 English-German and WMT19 Chinese-English tasks show our approach can significantly outperform the Transformer baseline and other related methods.
Multimodal machine translation and textual chat translation have received considerable attention in recent years. Although the conversation in its natural form is usually multimodal, there still lacks work on multimodal machine translation in conversations. In this work, we introduce a new task named Multimodal Chat Translation (MCT), aiming to generate more accurate translations with the help of the associated dialogue history and visual context. To this end, we firstly construct a Multimodal Sentiment Chat Translation Dataset (MSCTD) containing 142,871 English-Chinese utterance pairs in 14,762 bilingual dialogues. Each utterance pair, corresponding to the visual context that reflects the current conversational scene, is annotated with a sentiment label. Then, we benchmark the task by establishing multiple baseline systems that incorporate multimodal and sentiment features for MCT. Preliminary experiments on two language directions (English-Chinese) verify the potential of contextual and multimodal information fusion and the positive impact of sentiment on the MCT task. Additionally, we provide a new benchmark on multimodal dialogue sentiment analysis with the constructed MSCTD. Our work can facilitate researches on both multimodal chat translation and multimodal dialogue sentiment analysis.
Most dominant neural machine translation (NMT) models are restricted to make predictions only according to the local context of preceding words in a left-to-right manner. Although many previous studies try to incorporate global information into NMT models, there still exist limitations on how to effectively exploit bidirectional global context. In this paper, we propose a Confidence Based Bidirectional Global Context Aware (CBBGCA) training framework for NMT, where the NMT model is jointly trained with an auxiliary conditional masked language model (CMLM). The training consists of two stages: (1) multi-task joint training; (2) confidence based knowledge distillation. At the first stage, by sharing encoder parameters, the NMT model is additionally supervised by the signal from the CMLM decoder that contains bidirectional global contexts. Moreover, at the second stage, using the CMLM as teacher, we further pertinently incorporate bidirectional global context to the NMT model on its unconfidently-predicted target words via knowledge distillation. Experimental results show that our proposed CBBGCA training framework significantly improves the NMT model by +1.02, +1.30 and +0.57 BLEU scores on three large-scale translation datasets, namely WMT’14 English-to-German, WMT’19 Chinese-to-English and WMT’14 English-to-French, respectively.
Neural Chat Translation (NCT) aims to translate conversational text into different languages. Existing methods mainly focus on modeling the bilingual dialogue characteristics (e.g., coherence) to improve chat translation via multi-task learning on small-scale chat translation data. Although the NCT models have achieved impressive success, it is still far from satisfactory due to insufficient chat translation data and simple joint training manners. To address the above issues, we propose a scheduled multi-task learning framework for NCT. Specifically, we devise a three-stage training framework to incorporate the large-scale in-domain chat translation data into training by adding a second pre-training stage between the original pre-training and fine-tuning stages. Further, we investigate where and how to schedule the dialogue-related auxiliary tasks in multiple training stages to effectively enhance the main chat translation task. Extensive experiments on four language directions (English-Chinese and English-German) verify the effectiveness and superiority of the proposed approach. Additionally, we will make the large-scale in-domain paired bilingual dialogue dataset publicly available for the research community.
Recent work has identified properties of pretrained self-attention models that mirror those of dependency parse structures. In particular, some self-attention heads correspond well to individual dependency types. Inspired by these developments, we propose a new competitive mechanism that encourages these attention heads to model different dependency relations. We introduce a new model, the Unsupervised Dependency Graph Network (UDGN), that can induce dependency structures from raw corpora and the masked language modeling task. Experiment results show that UDGN achieves very strong unsupervised dependency parsing performance without gold POS tags and any other external information. The competitive gated heads show a strong correlation with human-annotated dependency types. Furthermore, the UDGN can also achieve competitive performance on masked language modeling and sentence textual similarity tasks.
Hyperbolic neural networks have shown great potential for modeling complex data. However, existing hyperbolic networks are not completely hyperbolic, as they encode features in the hyperbolic space yet formalize most of their operations in the tangent space (a Euclidean subspace) at the origin of the hyperbolic model. This hybrid method greatly limits the modeling ability of networks. In this paper, we propose a fully hyperbolic framework to build hyperbolic networks based on the Lorentz model by adapting the Lorentz transformations (including boost and rotation) to formalize essential operations of neural networks. Moreover, we also prove that linear transformation in tangent spaces used by existing hyperbolic networks is a relaxation of the Lorentz rotation and does not include the boost, implicitly limiting the capabilities of existing hyperbolic networks. The experimental results on four NLP tasks show that our method has better performance for building both shallow and deep networks. Our code will be released to facilitate follow-up research.
Complete Multi-lingual Neural Machine Translation (C-MNMT) achieves superior performance against the conventional MNMT by constructing multi-way aligned corpus, i.e., aligning bilingual training examples from different language pairs when either their source or target sides are identical. However, since exactly identical sentences from different language pairs are scarce, the power of the multi-way aligned corpus is limited by its scale. To handle this problem, this paper proposes “Extract and Generate” (EAG), a two-step approach to construct large-scale and high-quality multi-way aligned corpus from bilingual data. Specifically, we first extract candidate aligned examples by pairing the bilingual examples from different language pairs with highly similar source or target sentences; and then generate the final aligned examples from the candidates with a well-trained generation model. With this two-step pipeline, EAG can construct a large-scale and multi-way aligned corpus whose diversity is almost identical to the original bilingual corpus. Experiments on two publicly available datasets i.e., WMT-5 and OPUS-100, show that the proposed method achieves significant improvements over strong baselines, with +1.1 and +1.4 BLEU points improvements on the two datasets respectively.
In recent years, large-scale pre-trained language models (PLMs) containing billions of parameters have achieved promising results on various NLP tasks. Although we can pre-train these big models by stacking computing clusters at any cost, it is impractical to use such huge computing resources to apply big models for each downstream task. To address the computation bottleneck encountered in deploying big models in real-world scenarios, we introduce an open-source toolkit for big model inference and tuning (BMInf), which can support big model inference and tuning at extremely low computation cost. More specifically, at the algorithm level, we introduce model quantization and parameter-efficient tuning for efficient model inference and tuning. At the implementation level, we apply model offloading, model checkpointing, and CPU-GPU scheduling optimization to further reduce the computation and memory cost of big models. Based on above efforts, we can efficiently perform big model inference and tuning with a single GPU (even a consumer-level GPU like GTX 1060) instead of computing clusters, which is difficult for existing distributed learning toolkits for PLMs. BMInf is publicly released at https://github.com/OpenBMB/BMInf.
The diverse relationships among real-world events, including coreference, temporal, causal, and subevent relations, are fundamental to understanding natural languages. However, two drawbacks of existing datasets limit event relation extraction (ERE) tasks: (1) Small scale. Due to the annotation complexity, the data scale of existing datasets is limited, which cannot well train and evaluate data-hungry models. (2) Absence of unified annotation. Different types of event relations naturally interact with each other, but existing datasets only cover limited relation types at once, which prevents models from taking full advantage of relation interactions. To address these issues, we construct a unified large-scale human-annotated ERE dataset MAVEN-ERE with improved annotation schemes. It contains 103,193 event coreference chains, 1,216,217 temporal relations, 57,992 causal relations, and 15,841 subevent relations, which is larger than existing datasets of all the ERE tasks by at least an order of magnitude. Experiments show that ERE on MAVEN-ERE is quite challenging, and considering relation interactions with joint learning can improve performances. The dataset and source codes can be obtained from https://github.com/THU-KEG/MAVEN-ERE.
The construction of open-domain dialogue systems requires high-quality dialogue datasets. The dialogue data admits a wide variety of responses for a given dialogue history, especially responses with different semantics. However, collecting high-quality such a dataset in most scenarios is labor-intensive and time-consuming. In this paper, we propose a data augmentation method to automatically augment high-quality responses with different semantics by counterfactual inference. Specifically, given an observed dialogue, our counterfactual generation model first infers semantically different responses by replacing the observed reply perspective with substituted ones. Furthermore, our data selection method filters out detrimental augmented responses. Experimental results show that our data augmentation method can augment high-quality responses with different semantics for a given dialogue history, and can outperform competitive baselines on multiple downstream tasks.
Even though the large-scale language models have achieved excellent performances, they suffer from various adversarial attacks.A large body of defense methods has been proposed. However, they are still limited due to redundant attack search spaces and the inability to defend against various types of attacks.In this work, we present a novel fine-tuning approach called RObust SEletive fine-tuning (ROSE) to address this issue.ROSE conducts selective updates when adapting pre-trained models to downstream tasks, filtering out invaluable and unrobust updates of parameters.Specifically, we propose two strategies: the first-order and second-order ROSE for selecting target robust parameters.The experimental results show that ROSE achieves significant improvements in adversarial robustness on various downstream NLP tasks, and the ensemble method even surpasses both variants above.Furthermore, ROSE can be easily incorporated into existing fine-tuning methods to improve their adversarial robustness further.The empirical analysis confirms that ROSE eliminates unrobust spurious updates during fine-tuning, leading to solutions corresponding to flatter and wider optima than the conventional method.Code is available at https://github.com/jiangllan/ROSE.
Word alignment which aims to extract lexicon translation equivalents between source and target sentences, serves as a fundamental tool for natural language processing. Recent studies in this area have yielded substantial improvements by generating alignments from contextualized embeddings of the pre-trained multilingual language models. However, we find that the existing approaches capture few interactions between the input sentence pairs, which degrades the word alignment quality severely, especially for the ambiguous words in the monolingual context. To remedy this problem, we propose Cross-Align to model deep interactions between the input sentence pairs, in which the source and target sentences are encoded separately with the shared self-attention modules in the shallow layers, while cross-lingual interactions are explicitly constructed by the cross-attention modules in the upper layers. Besides, to train our model effectively, we propose a two-stage training framework, where the model is trained with a simple Translation Language Modeling (TLM) objective in the first stage and then finetuned with a self-supervised alignment objective in the second stage. Experiments show that the proposed Cross-Align achieves the state-of-the-art (SOTA) performance on four out of five language pairs.
Mixture-of-Experts (MoE) networks have been proposed as an efficient way to scale up model capacity and implement conditional computing. However, the study of MoE components mostly focused on the feedforward layer in Transformer architecture. This paper proposes the Mixture of Attention Heads (MoA), a new architecture that combines multi-head attention with the MoE mechanism. MoA includes a set of attention heads that each has its own set of parameters. Given an input, a router dynamically selects a subset of k attention heads per token. This conditional computation schema allows MoA to achieve stronger performance than the standard multi-head attention layer. Furthermore, the sparsely gated MoA can easily scale up the number of attention heads and the number of parameters while preserving computational efficiency. Despite performance improvements, MoA also automatically differentiates heads’ utilities, providing a new perspective to discuss the model’s interpretability. We conducted experiments on several important tasks, including Machine Translation and Masked Language Modeling. Experiments have shown promising results on several tasks against strong baselines that involve large and very deep models.
Translation suggestion (TS), which provides alternatives for specific words or phrases given the entire documents generated by machine translation (MT), has been proven to play a significant role in post-editing (PE). There are two main pitfalls for existing researches in this line. First, most conventional works only focus on the overall performance of PE but ignore the exact performance of TS, which makes the progress of PE sluggish and less explainable; Second, as no publicly available golden dataset exists to support in-depth research for TS, almost all of the previous works conduct experiments on their in-house datasets or the noisy datasets built automatically, which makes their experiments hard to be reproduced and compared. To break these limitations mentioned above and spur the research in TS, we create a benchmark dataset, called WeTS, which is a golden corpus annotated by expert translators on four translation directions. Apart from the golden corpus, we also propose several methods to generate synthetic corpora which can be used to improve the performance substantially through pre-training. As for the model, we propose the segment-aware self-attention based Transformer for TS. Experimental results show that our approach achieves the best results on all four directions, including English-to-German, German-to-English, Chinese-to-English, and English-to-Chinese.
k-Nearest-Neighbor Machine Translation (kNN-MT) becomes an important research direction of NMT in recent years. Its main idea is to retrieve useful key-value pairs from an additional datastore to modify translations without updating the NMT model. However, the underlying retrieved noisy pairs will dramatically deteriorate the model performance. In this paper, we conduct a preliminary study and find that this problem results from not fully exploiting the prediction of the NMT model. To alleviate the impact of noise, we propose a confidence-enhanced kNN-MT model with robust training. Concretely, we introduce the NMT confidence to refine the modeling of two important components of kNN-MT: kNN distribution and the interpolation weight. Meanwhile we inject two types of perturbations into the retrieved pairs for robust training. Experimental results on four benchmark datasets demonstrate that our model not only achieves significant improvements over current kNN-MT models, but also exhibits better robustness. Our code is available at https://github.com/DeepLearnXMU/Robust-knn-mt.
Recent years have witnessed the prevalent application of pre-trained language models (PLMs) in NLP. From the perspective of parameter space, PLMs provide generic initialization, starting from which high-performance minima could be found. Although plenty of works have studied how to effectively and efficiently adapt PLMs to high-performance minima, little is known about the connection of various minima reached under different adaptation configurations. In this paper, we investigate the geometric connections of different minima through the lens of mode connectivity, which measures whether two minima can be connected with a low-loss path. We conduct empirical analyses to investigate three questions: (1) how could hyperparameters, specific tuning methods, and training data affect PLM’s mode connectivity? (2) How does mode connectivity change during pre-training? (3) How does the PLM’s task knowledge change along the path connecting two minima? In general, exploring the mode connectivity of PLMs conduces to understanding the geometric connection of different minima, which may help us fathom the inner workings of PLM downstream adaptation. The codes are publicly available at https://github.com/thunlp/Mode-Connectivity-PLM.
We present ClidSum, a benchmark dataset towards building cross-lingual summarization systems on dialogue documents. It consists of 67k+ dialogue documents and 112k+ annotated summaries in different target languages. Based on the proposed ClidSum, we introduce two benchmark settings for supervised and semi-supervised scenarios, respectively. We then build various baseline systems in different paradigms (pipeline and end-to-end) and conduct extensive experiments on ClidSum to provide deeper analyses. Furthermore, we propose mDialBART which extends mBART via further pre-training, where the multiple objectives help the pre-trained model capture the structural characteristics as well as key content in dialogues and the transformation from source to the target language. Experimental results show the superiority of mDialBART, as an end-to-end model, outperforms strong pipeline models on ClidSum. Finally, we discuss specific challenges that current approaches faced with this task and give multiple promising directions for future research. We have released the dataset and code at https://github.com/krystalan/ClidSum.
Solid evaluation of neural machine translation (NMT) is key to its understanding and improvement. Current evaluation of an NMT system is usually built upon a heuristic decoding algorithm (e.g., beam search) and an evaluation metric assessing similarity between the translation and golden reference. However, this system-level evaluation framework is limited by evaluating only one best hypothesis and search errors brought by heuristic decoding algorithms. To better understand NMT models, we propose a novel evaluation protocol, which defines model errors with model’s ranking capability over hypothesis space. To tackle the problem of exponentially large space, we propose two approximation methods, top region evaluation along with an exact top-k decoding algorithm, which finds top-ranked hypotheses in the whole hypothesis space, and Monte Carlo sampling evaluation, which simulates hypothesis space from a broader perspective. To quantify errors, we define our NMT model errors by measuring distance between the hypothesis array ranked by the model and the ideally ranked hypothesis array. After confirming the strong correlation with human judgment, we apply our evaluation to various NMT benchmarks and model architectures. We show that the state-of-the-art Transformer models face serious ranking issues and only perform at the random chance level in the top region. We further analyze model errors on architectures with different depths and widths, as well as different data-augmentation techniques, showing how these factors affect model errors. Finally, we connect model errors with the search algorithms and provide interesting findings of beam search inductive bias and correlation with Minimum Bayes Risk (MBR) decoding.
Prompt-based paradigm has shown its competitive performance in many NLP tasks. However, its success heavily depends on prompt design, and the effectiveness varies upon the model and training data. In this paper, we propose a novel dual context-guided continuous prompt (DCCP) tuning method. To explore the rich contextual information in language structure and close the gap between discrete prompt tuning and continuous prompt tuning, DCCP introduces two auxiliary training objectives and constructs input in a pair-wise fashion. Experimental results demonstrate that our method is applicable to many NLP tasks, and can often outperform existing prompt tuning methods by a large margin in the few-shot setting.
Prompt-based paradigm has shown its competitive performance in many NLP tasks. However, its success heavily depends on prompt design, and the effectiveness varies upon the model and training data. In this paper, we propose a novel dual context-guided continuous prompt (DCCP) tuning method. To explore the rich contextual information in language structure and close the gap between discrete prompt tuning and continuous prompt tuning, DCCP introduces two auxiliary training objectives and constructs input in a pair-wise fashion. Experimental results demonstrate that our method is applicable to many NLP tasks, and can often outperform existing prompt tuning methods by a large margin in the few-shot setting.
Recent work has shown that feed-forward networks (FFNs) in pre-trained Transformers are a key component, storing various linguistic and factual knowledge. However, the computational patterns of FFNs are still unclear. In this work, we study the computational patterns of FFNs and observe that most inputs only activate a tiny ratio of neurons of FFNs. This phenomenon is similar to the sparsity of the human brain, which drives research on functional partitions of the human brain. To verify whether functional partitions also emerge in FFNs, we propose to convert a model into its MoE version with the same parameters, namely MoEfication. Specifically, MoEfication consists of two phases: (1) splitting the parameters of FFNs into multiple functional partitions as experts, and (2) building expert routers to decide which experts will be used for each input. Experimental results show that MoEfication can conditionally use 10% to 30% of FFN parameters while maintaining over 95% original performance for different models on various downstream tasks. Besides, MoEfication brings two advantages: (1) it significantly reduces the FLOPS of inference, i.e., 2x speedup with 25% of FFN parameters, and (2) it provides a fine-grained perspective to study the inner mechanism of FFNs. The source code of this paper can be obtained from https://github.com/thunlp/MoEfication.
Current pre-trained language models (PLM) are typically trained with static data, ignoring that in real-world scenarios, streaming data of various sources may continuously grow. This requires PLMs to integrate the information from all the sources in a lifelong manner. Although this goal could be achieved by exhaustive pre-training on all the existing data, such a process is known to be computationally expensive. To this end, we propose ELLE, aiming at efficient lifelong pre-training for emerging data. Specifically, ELLE consists of (1) function preserved model expansion, which flexibly expands an existing PLM’s width and depth to improve the efficiency of knowledge acquisition; and (2) pre-trained domain prompts, which disentangle the versatile knowledge learned during pre-training and stimulate the proper knowledge for downstream tasks. We experiment ELLE with streaming data from 5 domains on BERT and GPT. The results show the superiority of ELLE over various lifelong learning baselines in both pre-training efficiency and downstream performances. The codes are publicly available at https://github.com/thunlp/ELLE.
With the increasing popularity of online chatting, stickers are becoming important in our online communication. Selecting appropriate stickers in open-domain dialogue requires a comprehensive understanding of both dialogues and stickers, as well as the relationship between the two types of modalities. To tackle these challenges, we propose a multitask learning method comprised of three auxiliary tasks to enhance the understanding of dialogue history, emotion and semantic meaning of stickers. Extensive experiments conducted on a recent challenging dataset show that our model can better combine the multimodal information and achieve significantly higher accuracy over strong baselines. Ablation study further verifies the effectiveness of each auxiliary task. Our code is available at https://github.com/nonstopfor/Sticker-Selection.
In recent years, pre-trained language models (PLMs) have been shown to capture factual knowledge from massive texts, which encourages the proposal of PLM-based knowledge graph completion (KGC) models. However, these models are still quite behind the SOTA KGC models in terms of performance. In this work, we find two main reasons for the weak performance: (1) Inaccurate evaluation setting. The evaluation setting under the closed-world assumption (CWA) may underestimate the PLM-based KGC models since they introduce more external knowledge; (2) Inappropriate utilization of PLMs. Most PLM-based KGC models simply splice the labels of entities and relations as inputs, leading to incoherent sentences that do not take full advantage of the implicit knowledge in PLMs. To alleviate these problems, we highlight a more accurate evaluation setting under the open-world assumption (OWA), which manual checks the correctness of knowledge that is not in KGs. Moreover, motivated by prompt tuning, we propose a novel PLM-based KGC model named PKGC. The basic idea is to convert each triple and its support information into natural prompt sentences, which is further fed into PLMs for classification. Experiment results on two KGC datasets demonstrate OWA is more reliable for evaluating KGC, especially on the link prediction, and the effectiveness of our PKCG model on both CWA and OWA settings.
Recent studies have shown the impressive efficacy of counterfactually augmented data (CAD) for reducing NLU models’ reliance on spurious features and improving their generalizability. However, current methods still heavily rely on human efforts or task-specific designs to generate counterfactuals, thereby impeding CAD’s applicability to a broad range of NLU tasks. In this paper, we present AutoCAD, a fully automatic and task-agnostic CAD generation framework. AutoCAD first leverages a classifier to unsupervisedly identify rationales as spans to be intervened, which disentangles spurious and causal features. Then, AutoCAD performs controllable generation enhanced by unlikelihood training to produce diverse counterfactuals. Extensive evaluations on multiple out-of-domain and challenge benchmarks demonstrate that AutoCAD consistently and significantly boosts the out-of-distribution performance of powerful pre-trained models across different NLU tasks, which is comparable or even better than previous state-of-the-art human-in-the-loop or task-specific CAD methods.
Delta tuning (DET, also known as parameter-efficient tuning) is deemed as the new paradigm for using pre-trained language models (PLMs). Up to now, various DETs with distinct design elements have been proposed, achieving performance on par with fine-tuning. However, the mechanisms behind the above success are still under-explored, especially the connections among various DETs. To fathom the mystery, we hypothesize that the adaptations of different DETs could all be reparameterized as low-dimensional optimizations in a unified optimization subspace, which could be found by jointly decomposing independent solutions of different DETs. Then we explore the connections among different DETs by conducting optimization within the subspace. In experiments, we find that, for a certain DET, conducting optimization simply in the subspace could achieve comparable performance to its original space, and the found solution in the subspace could be transferred to another DET and achieve non-trivial performance. We also visualize the performance landscape of the subspace, and find that, there exists a substantial region where different DETs all perform well. Finally, we extend our analysis and show the strong connections between fine-tuning and DETs. The codes are publicly available at https://github.com/thunlp/Unified-DeltaTuning.
Visual Question Answering (VQA) models are prone to learn the shortcut solution formed by dataset biases rather than the intended solution. To evaluate the VQA models’ reasoning ability beyond shortcut learning, the VQA-CP v2 dataset introduces a distribution shift between the training and test set given a question type. In this way, the model cannot use the training set shortcut (from question type to answer) to perform well on the test set. However, VQA-CP v2 only considers one type of shortcut and thus still cannot guarantee that the model relies on the intended solution rather than a solution specific to this shortcut. To overcome this limitation, we propose a new dataset that considers varying types of shortcuts by constructing different distribution shifts in multiple OOD test sets. In addition, we overcome the three troubling practices in the use of VQA-CP v2, e.g., selecting models using OOD test sets, and further standardize OOD evaluation procedure. Our benchmark provides a more rigorous and comprehensive testbed for shortcut learning in VQA. We benchmark recent methods and find that methods specifically designed for particular shortcuts fail to simultaneously generalize to our varying OOD test sets. We also systematically study the varying shortcuts and provide several valuable findings, which may promote the exploration of shortcut learning in VQA.
Empathy, which is widely used in psychological counseling, is a key trait of everyday human conversations. Equipped with commonsense knowledge, current approaches to empathetic response generation focus on capturing implicit emotion within dialogue context, where the emotions are treated as a static variable throughout the conversations. However, emotions change dynamically between utterances, which makes previous works difficult to perceive the emotion flow and predict the correct emotion of the target response, leading to inappropriate response. Furthermore, simply importing commonsense knowledge without harmonization may trigger the conflicts between knowledge and emotion, which confuse the model to choose the correct information to guide the generation process. To address the above problems, we propose a Serial Encoding and Emotion-Knowledge interaction (SEEK) method for empathetic dialogue generation. We use a fine-grained encoding strategy which is more sensitive to the emotion dynamics (emotion flow) in the conversations to predict the emotion-intent characteristic of response. Besides, we design a novel framework to model the interaction between knowledge and emotion to solve the conflicts generate more sensible response. Extensive experiments on the utterance-level annotated EMPATHETICDIALOGUES demonstrate that SEEK outperforms the strong baseline in both automatic and manual evaluations.
Investigating better ways to reuse the released pre-trained language models (PLMs) can significantly reduce the computational cost and the potential environmental side-effects. This paper explores a novel PLM reuse paradigm, Knowledge Integration (KI). Without human annotations available, KI aims to merge the knowledge from different teacher-PLMs, each of which specializes in a different classification problem, into a versatile student model. To achieve this, we first derive the correlation between virtual golden supervision and teacher predictions. We then design a Model Uncertainty–aware Knowledge Integration (MUKI) framework to recover the golden supervision for the student. Specifically, MUKI adopts Monte-Carlo Dropout to estimate model uncertainty for the supervision integration. An instance-wise re-weighting mechanism based on the margin of uncertainty scores is further incorporated, to deal with the potential conflicting supervision from teachers.Experimental results demonstrate that MUKI achieves substantial improvements over baselines on benchmark datasets. Further analysis shows that MUKI can generalize well for merging teacher models with heterogeneous architectures, and even teachers major in cross-lingual datasets.
Models for Visual Question Answering (VQA) often rely on the spurious correlations, i.e., the language priors, that appear in the biased samples of training set, which make them brittle against the out-of-distribution (OOD) test data. Recent methods have achieved promising progress in overcoming this problem by reducing the impact of biased samples on model training. However, these models reveal a trade-off that the improvements on OOD data severely sacrifice the performance on the in-distribution (ID) data (which is dominated by the biased samples). Therefore, we propose a novel contrastive learning approach, MMBS, for building robust VQA models by Making the Most of Biased Samples. Specifically, we construct positive samples for contrastive learning by eliminating the information related to spurious correlation from the original training samples and explore several strategies to use the constructed positive samples for training. Instead of undermining the importance of biased samples in model training, our approach precisely exploits the biased samples for unbiased information that contributes to reasoning. The proposed method is compatible with various VQA backbones. We validate our contributions by achieving competitive performance on the OOD dataset VQA-CP v2 while preserving robust performance on the ID dataset VQA v2.
Sentiment analysis is increasingly viewed as a vital task both from an academic and a commercial standpoint. In this paper, we focus on the structured sentiment analysis task that is released on SemEval-2022 Task 10. The task aims to extract the structured sentiment information (e.g., holder, target, expression and sentiment polarity) in a text. We propose a simple and unified model for both the monolingual and crosslingual structured sentiment analysis tasks. We translate this task into an event extraction task by regrading the expression as the trigger word and the other elements as the arguments of the event. Particularly, we first extract the expression by judging its start and end indices. Then, to consider the expression, we design a conditional layer normalization algorithm to extract the holder and target based on the extracted expression. Finally, we infer the sentiment polarity based on the extracted structured information. Pre-trained language models are utilized to obtain the text representation. We conduct the experiments on seven datasets in five languages. It attracted 233 submissions in monolingual subtask and crosslingual subtask from 32 teams. Finally, we obtain the top 5 place on crosslingual tasks.
We report the result of the first edition of the WMT shared task on Translation Suggestion (TS). The task aims to provide alternatives for specific words or phrases given the entire documents generated by machine translation (MT). It consists two sub-tasks, namely, the naive translation suggestion and translation suggestion with hints. The main difference is that some hints are provided in sub-task two, therefore, it is easier for the model to generate more accurate suggestions. For sub-task one, we provide the corpus for the language pairs English-German and English-Chinese. And only English-Chinese corpus is provided for the sub-task two. We received 92 submissions from 5 participating teams in sub-task one and 6 submissions for the sub-task 2, most of them covering all of the translation directions. We used the automatic metric BLEU for evaluating the performance of each submission.
This paper introduces WeChat’s participation in WMT 2022 shared biomedical translationtask on Chinese→English. Our systems are based on the Transformer(Vaswani et al., 2017),and use several different Transformer structures to improve the quality of translation. In our experiments, we employ data filtering, data generation, several variants of Transformer,fine-tuning and model ensemble. Our Chinese→English system, named Summer, achieves the highest BLEU score among all submissions.
This paper introduces the joint submission of the Beijing Jiaotong University and WeChat AI to the WMT’22 chat translation task for English-German. Based on the Transformer, we apply several effective variants. In our experiments, we apply the pre-training-then-fine-tuning paradigm. In the first pre-training stage, we employ data filtering and synthetic data generation (i.e., back-translation, forward-translation, and knowledge distillation). In the second fine-tuning stage, we investigate speaker-aware in-domain data generation, speaker adaptation, prompt-based context modeling, target denoising fine-tuning, and boosted self-COMET-based model ensemble. Our systems achieve 81.0 and 94.6 COMET scores on English-German and German-English, respectively. The COMET scores of English-German and German-English are the highest among all submissions.
Cross-lingual summarization is the task of generating a summary in one language (e.g., English) for the given document(s) in a different language (e.g., Chinese). Under the globalization background, this task has attracted increasing attention of the computational linguistics community. Nevertheless, there still remains a lack of comprehensive review for this task. Therefore, we present the first systematic critical review on the datasets, approaches, and challenges in this field. Specifically, we carefully organize existing datasets and approaches according to different construction methods and solution paradigms, respectively. For each type of dataset or approach, we thoroughly introduce and summarize previous efforts and further compare them with each other to provide deeper analyses. In the end, we also discuss promising directions and offer our thoughts to facilitate future research. This survey is for both beginners and experts in cross-lingual summarization, and we hope it will serve as a starting point as well as a source of new ideas for researchers and engineers interested in this area.
Knowledge-grounded dialogue generation consists of two subtasks: knowledge selection and response generation. The knowledge selector generally constructs a query based on the dialogue context and selects the most appropriate knowledge to help response generation. Recent work finds that realizing who (the user or the agent) holds the initiative and utilizing the role-initiative information to instruct the query construction can help select knowledge. It depends on whether the knowledge connection between two adjacent rounds is smooth to assign the role. However, whereby the user takes the initiative only when there is a strong semantic transition between two rounds, probably leading to initiative misjudgment. Therefore, it is necessary to seek a more sensitive reason beyond the initiative role for knowledge selection. To address the above problem, we propose a Topic-shift Aware Knowledge sElector(TAKE). Specifically, we first annotate the topic shift and topic inheritance labels in multi-round dialogues with distant supervision. Then, we alleviate the noise problem in pseudo labels through curriculum learning and knowledge distillation. Extensive experiments on WoW show that TAKE performs better than strong baselines.
Event argument extraction (EAE) aims to extract arguments with given roles from texts, which have been widely studied in natural language processing. Most previous works have achieved good performance in specific EAE datasets with dedicated neural architectures. Whereas, these architectures are usually difficult to adapt to new datasets/scenarios with various annotation schemas or formats. Furthermore, they rely on large-scale labeled data for training, which is unavailable due to the high labelling cost in most cases. In this paper, we propose a multi-format transfer learning model with variational information bottleneck, which makes use of the information especially the common knowledge in existing datasets for EAE in new datasets. Specifically, we introduce a shared-specific prompt framework to learn both format-shared and format-specific knowledge from datasets with different formats. In order to further absorb the common knowledge for EAE and eliminate the irrelevant noise, we integrate variational information bottleneck into our architecture to refine the shared representation. We conduct extensive experiments on three benchmark datasets, and obtain new state-of-the-art performance on EAE.
Temporal relation extraction aims to extract temporal relations between event pairs, which is crucial for natural language understanding. Few efforts have been devoted to capturing the global features. In this paper, we propose RSGT: Relational Structure Guided Temporal Relation Extraction to extract the relational structure features that can fit for both inter-sentence and intra-sentence relations. Specifically, we construct a syntactic-and-semantic-based graph to extract relational structures. Then we present a graph neural network based model to learn the representation of this graph. After that, an auxiliary temporal neighbor prediction task is used to fine-tune the encoder to get more comprehensive node representations. Finally, we apply a conflict detection and correction algorithm to adjust the wrongly predicted labels. Experiments on two well-known datasets, MATRES and TB-Dense, demonstrate the superiority of our method (2.3% F1 improvement on MATRES, 3.5% F1 improvement on TB-Dense).
Unsupervised sentence embeddings learning has been recently dominated by contrastive learning methods (e.g., SimCSE), which keep positive pairs similar and push negative pairs apart. The contrast operation aims to keep as much information as possible by maximizing the mutual information between positive instances, which leads to redundant information in sentence embedding. To address this problem, we present an information minimization based contrastive learning InforMin-CL model to retain the useful information and discard the redundant information by maximizing the mutual information and minimizing the information entropy between positive instances meanwhile for unsupervised sentence representation learning. Specifically, we find that information minimization can be achieved by simple contrast and reconstruction objectives. The reconstruction operation reconstitutes the positive instance via the other positive instance to minimize the information entropy between positive instances. We evaluate our model on fourteen downstream tasks, including both supervised and unsupervised (semantic textual similarity) tasks. Extensive experimental results show that our InforMin-CL obtains a state-of-the-art performance.
Prompting, which casts downstream applications as language modeling tasks, has shown to be sample efficient compared to standard fine-tuning with pre-trained models. However, one pitfall of prompting is the need of manually-designed patterns, whose outcome can be unintuitive and requires large validation sets to tune. To tackle the challenge, we propose AutoSeq, a fully automatic prompting method: (1) We adopt natural language prompts on sequence-to-sequence models, enabling free-form generation and larger label search space; (2) We propose label sequences – phrases with indefinite lengths to verbalize the labels – which eliminate the need of manual templates and are more expressive than single label words; (3) We use beam search to automatically generate a large amount of label sequence candidates and propose contrastive re-ranking to get the best combinations. AutoSeq significantly outperforms other no-manual-design methods, such as soft prompt tuning, adapter tuning, and automatic search on single label words; the generated label sequences are even better than curated manual ones on a variety of tasks. Our method reveals the potential of sequence-to-sequence models in few-shot learning and sheds light on a path to generic and automatic prompting. The source code of this paper can be obtained from https://github.com/thunlp/Seq2Seq-Prompt.
Modern neural machine translation (NMT) models have achieved competitive performance in standard benchmarks. However, they have recently been shown to suffer limitation in compositional generalization, failing to effectively learn the translation of atoms (e.g., words) and their semantic composition (e.g., modification) from seen compounds (e.g., phrases), and thus suffering from significantly weakened translation performance on unseen compounds during inference. We address this issue by introducing categorization to the source contextualized representations. The main idea is to enhance generalization by reducing sparsity and overfitting, which is achieved by finding prototypes of token representations over the training set and integrating their embeddings into the source encoding. Experiments on a dedicated MT dataset (i.e., CoGnition) show that our method reduces compositional generalization error rates by 24% error reduction. In addition, our conceptually simple method gives consistently better results than the Transformer baseline on a range of general MT datasets.
Causal Emotion Entailment (CEE) aims to discover the potential causes behind an emotion in a conversational utterance. Previous works formalize CEE as independent utterance pair classification problems, with emotion and speaker information neglected. From a new perspective, this paper considers CEE in a joint framework. We classify multiple utterances synchronously to capture the correlations between utterances in a global view and propose a Two-Stream Attention Model (TSAM) to effectively model the speaker’s emotional influences in the conversational history. Specifically, the TSAM comprises three modules: Emotion Attention Network (EAN), Speaker Attention Network (SAN), and interaction module. The EAN and SAN incorporate emotion and speaker information in parallel, and the subsequent interaction module effectively interchanges relevant information between the EAN and SAN via a mutual BiAffine transformation. Extensive experimental results demonstrate that our model achieves new State-Of-The-Art (SOTA) performance and outperforms baselines remarkably.
Despite having achieved great success for sentiment analysis, existing neural models struggle with implicit sentiment analysis. It is because they may latch onto spurious correlations (“shortcuts”, e.g., focusing only on explicit sentiment words), resulting in undermining the effectiveness and robustness of the learned model. In this work, we propose a CausaL intervention model for implicit sEntiment ANalysis using instrumental variable (CLEAN). We first review sentiment analysis from a causal perspective and analyze the confounders existing in this task. Then, we introduce instrumental variable to eliminate the confounding causal effects, thus extracting the pure causal effect between sentence and sentiment. We compare the proposed CLEAN with several strong baselines on both the general implicit sentiment analysis and aspect-based implicit sentiment analysis tasks. The results indicate the great advantages of our model and the efficacy of implicit sentiment reasoning.
Nowadays, open-domain dialogue models can generate acceptable responses according to the historical context based on the large-scale pre-trained language models. However, they generally concatenate the dialogue history directly as the model input to predict the response, which we named as the flat pattern and ignores the dynamic information flow across dialogue utterances. In this work, we propose the DialoFlow model, in which we introduce a dynamic flow mechanism to model the context flow, and design three training objectives to capture the information dynamics across dialogue utterances by addressing the semantic influence brought about by each utterance in large-scale pre-training. Experiments on the multi-reference Reddit Dataset and DailyDialog Dataset demonstrate that our DialoFlow significantly outperforms the DialoGPT on the dialogue generation task. Besides, we propose the Flow score, an effective automatic metric for evaluating interactive human-bot conversation quality based on the pre-trained DialoFlow, which presents high chatbot-level correlation (r=0.9) with human ratings among 11 chatbots. Code and pre-trained models will be public.
Recently, knowledge distillation (KD) has shown great success in BERT compression. Instead of only learning from the teacher’s soft label as in conventional KD, researchers find that the rich information contained in the hidden layers of BERT is conducive to the student’s performance. To better exploit the hidden knowledge, a common practice is to force the student to deeply mimic the teacher’s hidden states of all the tokens in a layer-wise manner. In this paper, however, we observe that although distilling the teacher’s hidden state knowledge (HSK) is helpful, the performance gain (marginal utility) diminishes quickly as more HSK is distilled. To understand this effect, we conduct a series of analysis. Specifically, we divide the HSK of BERT into three dimensions, namely depth, length and width. We first investigate a variety of strategies to extract crucial knowledge for each single dimension and then jointly compress the three dimensions. In this way, we show that 1) the student’s performance can be improved by extracting and distilling the crucial HSK, and 2) using a tiny fraction of HSK can achieve the same performance as extensive HSK distillation. Based on the second finding, we further propose an efficient KD paradigm to compress BERT, which does not require loading the teacher during the training of student. For two kinds of student models and computing devices, the proposed KD paradigm gives rise to training speedup of 2.7x 3.4x.
Pre-trained Language Models (PLMs) have shown superior performance on various downstream Natural Language Processing (NLP) tasks. However, conventional pre-training objectives do not explicitly model relational facts in text, which are crucial for textual understanding. To address this issue, we propose a novel contrastive learning framework ERICA to obtain a deep understanding of the entities and their relations in text. Specifically, we define two novel pre-training tasks to better understand entities and relations: (1) the entity discrimination task to distinguish which tail entity can be inferred by the given head entity and relation; (2) the relation discrimination task to distinguish whether two relations are close or not semantically, which involves complex relational reasoning. Experimental results demonstrate that ERICA can improve typical PLMs (BERT and RoBERTa) on several language understanding tasks, including relation extraction, entity typing and question answering, especially under low-resource settings.
The Neural Machine Translation (NMT) model is essentially a joint language model conditioned on both the source sentence and partial translation. Therefore, the NMT model naturally involves the mechanism of the Language Model (LM) that predicts the next token only based on partial translation. Despite its success, NMT still suffers from the hallucination problem, generating fluent but inadequate translations. The main reason is that NMT pays excessive attention to the partial translation while neglecting the source sentence to some extent, namely overconfidence of the LM. Accordingly, we define the Margin between the NMT and the LM, calculated by subtracting the predicted probability of the LM from that of the NMT model for each token. The Margin is negatively correlated to the overconfidence degree of the LM. Based on the property, we propose a Margin-based Token-level Objective (MTO) and a Margin-based Sentence-level Objective (MSO) to maximize the Margin for preventing the LM from being overconfident. Experiments on WMT14 English-to-German, WMT19 Chinese-to-English, and WMT14 English-to-French translation tasks demonstrate the effectiveness of our approach, with 1.36, 1.50, and 0.63 BLEU improvements, respectively, compared to the Transformer baseline. The human evaluation further verifies that our approaches improve translation adequacy as well as fluency.
Generating some appealing questions in open-domain conversations is an effective way to improve human-machine interactions and lead the topic to a broader or deeper direction. To avoid dull or deviated questions, some researchers tried to utilize answer, the “future” information, to guide question generation. However, they separate a post-question-answer (PQA) triple into two parts: post-question (PQ) and question-answer (QA) pairs, which may hurt the overall coherence. Besides, the QA relationship is modeled as a one-to-one mapping that is not reasonable in open-domain conversations. To tackle these problems, we propose a generative triple-wise model with hierarchical variations for open-domain conversational question generation (CQG). Latent variables in three hierarchies are used to represent the shared background of a triple and one-to-many semantic mappings in both PQ and QA pairs. Experimental results on a large-scale CQG dataset show that our method significantly improves the quality of questions in terms of fluency, coherence and diversity over competitive baselines.
Due to the great potential in facilitating software development, code generation has attracted increasing attention recently. Generally, dominant models are Seq2Tree models, which convert the input natural language description into a sequence of tree-construction actions corresponding to the pre-order traversal of an Abstract Syntax Tree (AST). However, such a traversal order may not be suitable for handling all multi-branch nodes. In this paper, we propose to equip the Seq2Tree model with a context-based Branch Selector, which is able to dynamically determine optimal expansion orders of branches for multi-branch nodes. Particularly, since the selection of expansion orders is a non-differentiable multi-step operation, we optimize the selector through reinforcement learning, and formulate the reward function as the difference of model losses obtained through different expansion orders. Experimental results and in-depth analysis on several commonly-used datasets demonstrate the effectiveness and generality of our approach. We have released our code at https://github.com/DeepLearnXMU/CG-RL.
Recent researches have shown that large natural language processing (NLP) models are vulnerable to a kind of security threat called the Backdoor Attack. Backdoor attacked models can achieve good performance on clean test sets but perform badly on those input sentences injected with designed trigger words. In this work, we point out a potential problem of current backdoor attacking research: its evaluation ignores the stealthiness of backdoor attacks, and most of existing backdoor attacking methods are not stealthy either to system deployers or to system users. To address this issue, we first propose two additional stealthiness-based metrics to make the backdoor attacking evaluation more credible. We further propose a novel word-based backdoor attacking method based on negative data augmentation and modifying word embeddings, making an important step towards achieving stealthy backdoor attacking. Experiments on sentiment analysis and toxic detection tasks show that our method is much stealthier while maintaining pretty good attacking performance. Our code is available at https://github.com/lancopku/SOS.
Neural chat translation aims to translate bilingual conversational text, which has a broad application in international exchanges and cooperation. Despite the impressive performance of sentence-level and context-aware Neural Machine Translation (NMT), there still remain challenges to translate bilingual conversational text due to its inherent characteristics such as role preference, dialogue coherence, and translation consistency. In this paper, we aim to promote the translation quality of conversational text by modeling the above properties. Specifically, we design three latent variational modules to learn the distributions of bilingual conversational characteristics. Through sampling from these learned distributions, the latent variables, tailored for role preference, dialogue coherence, and translation consistency, are incorporated into the NMT model for better translation. We evaluate our approach on the benchmark dataset BConTrasT (English<->German) and a self-collected bilingual dialogue corpus, named BMELD (English<->Chinese). Extensive experiments show that our approach notably boosts the performance over strong baselines by a large margin and significantly surpasses some state-of-the-art context-aware NMT models in terms of BLEU and TER. Additionally, we make the BMELD dataset publicly available for the research community.
Event extraction (EE) has considerably benefited from pre-trained language models (PLMs) by fine-tuning. However, existing pre-training methods have not involved modeling event characteristics, resulting in the developed EE models cannot take full advantage of large-scale unsupervised data. To this end, we propose CLEVE, a contrastive pre-training framework for EE to better learn event knowledge from large unsupervised data and their semantic structures (e.g. AMR) obtained with automatic parsers. CLEVE contains a text encoder to learn event semantics and a graph encoder to learn event structures respectively. Specifically, the text encoder learns event semantic representations by self-supervised contrastive learning to represent the words of the same events closer than those unrelated words; the graph encoder learns event structure representations by graph contrastive pre-training on parsed event-related semantic structures. The two complementary representations then work together to improve both the conventional supervised EE and the unsupervised “liberal” EE, which requires jointly extracting events and discovering event schemata without any annotated data. Experiments on ACE 2005 and MAVEN datasets show that CLEVE achieves significant improvements, especially in the challenging unsupervised setting. The source code and pre-trained checkpoints can be obtained from https://github.com/THU-KEG/CLEVE.
Neural Machine Translation (NMT) models achieve state-of-the-art performance on many translation benchmarks. As an active research field in NMT, knowledge distillation is widely applied to enhance the model’s performance by transferring teacher model’s knowledge on each training sample. However, previous work rarely discusses the different impacts and connections among these samples, which serve as the medium for transferring teacher knowledge. In this paper, we design a novel protocol that can effectively analyze the different impacts of samples by comparing various samples’ partitions. Based on above protocol, we conduct extensive experiments and find that the teacher’s knowledge is not the more, the better. Knowledge over specific samples may even hurt the whole performance of knowledge distillation. Finally, to address these issues, we propose two simple yet effective strategies, i.e., batch-level and global-level selections, to pick suitable samples for distillation. We evaluate our approaches on two large-scale machine translation tasks, WMT’14 English-German and WMT’19 Chinese-English. Experimental results show that our approaches yield up to +1.28 and +0.89 BLEU points improvements over the Transformer baseline, respectively.
Recently, token-level adaptive training has achieved promising improvement in machine translation, where the cross-entropy loss function is adjusted by assigning different training weights to different tokens, in order to alleviate the token imbalance problem. However, previous approaches only use static word frequency information in the target language without considering the source language, which is insufficient for bilingual tasks like machine translation. In this paper, we propose a novel bilingual mutual information (BMI) based adaptive objective, which measures the learning difficulty for each target token from the perspective of bilingualism, and assigns an adaptive weight accordingly to improve token-level adaptive training. This method assigns larger training weights to tokens with higher BMI, so that easy tokens are updated with coarse granularity while difficult tokens are updated with fine granularity. Experimental results on WMT14 English-to-German and WMT19 Chinese-to-English demonstrate the superiority of our approach compared with the Transformer baseline and previous token-level adaptive training approaches. Further analyses confirm that our method can improve the lexical diversity.
Implicit discourse relation recognition (IDRR) aims to identify logical relations between two adjacent sentences in the discourse. Existing models fail to fully utilize the contextual information which plays an important role in interpreting each local sentence. In this paper, we thus propose a novel graph-based Context Tracking Network (CT-Net) to model the discourse context for IDRR. The CT-Net firstly converts the discourse into the paragraph association graph (PAG), where each sentence tracks their closely related context from the intricate discourse through different types of edges. Then, the CT-Net extracts contextual representation from the PAG through a specially designed cross-grained updating mechanism, which can effectively integrate both sentence-level and token-level contextual semantics. Experiments on PDTB 2.0 show that the CT-Net gains better performance than models that roughly model the context.
In recent years, Neural Machine Translation (NMT) has achieved notable results in various translation tasks. However, the word-by-word generation manner determined by the autoregressive mechanism leads to high translation latency of the NMT and restricts its low-latency applications. Non-Autoregressive Neural Machine Translation (NAT) removes the autoregressive mechanism and achieves significant decoding speedup by generating target words independently and simultaneously. Nevertheless, NAT still takes the word-level cross-entropy loss as the training objective, which is not optimal because the output of NAT cannot be properly evaluated due to the multimodality problem. In this article, we propose using sequence-level training objectives to train NAT models, which evaluate the NAT outputs as a whole and correlates well with the real translation quality. First, we propose training NAT models to optimize sequence-level evaluation metrics (e.g., BLEU) based on several novel reinforcement algorithms customized for NAT, which outperform the conventional method by reducing the variance of gradient estimation. Second, we introduce a novel training objective for NAT models, which aims to minimize the Bag-of-N-grams (BoN) difference between the model output and the reference sentence. The BoN training objective is differentiable and can be calculated efficiently without doing any approximations. Finally, we apply a three-stage training strategy to combine these two methods to train the NAT model. We validate our approach on four translation tasks (WMT14 En↔De, WMT16 En↔Ro), which shows that our approach largely outperforms NAT baselines and achieves remarkable performance on all translation tasks. The source code is available at https://github.com/ictnlp/Seq-NAT.
Modelling a word’s polarity in different contexts is a key task in sentiment analysis. Previous works mainly focus on domain dependencies, and assume words’ sentiments are invariant within a specific domain. In this paper, we relax this assumption by binding a word’s sentiment to its collocation words instead of domain labels. This finer view of sentiment contexts is particularly useful for identifying commonsense sentiments expressed in neural words such as “big” and “long”. Given a target (e.g., an aspect), we propose an effective “perturb-and-see” method to extract sentiment words modifying it from large-scale datasets. The reliability of the obtained target-aware sentiment lexicons is extensively evaluated both manually and automatically. We also show that a simple application of the lexicon is able to achieve highly competitive performances on the unsupervised opinion relation extraction task.
This paper introduces WeChat AI’s participation in WMT 2021 shared news translation task on English->Chinese, English->Japanese, Japanese->English and English->German. Our systems are based on the Transformer (Vaswani et al., 2017) with several novel and effective variants. In our experiments, we employ data filtering, large-scale synthetic data generation (i.e., back-translation, knowledge distillation, forward-translation, iterative in-domain knowledge transfer), advanced finetuning approaches, and boosted Self-BLEU based model ensemble. Our constrained systems achieve 36.9, 46.9, 27.8 and 31.3 case-sensitive BLEU scores on English->Chinese, English->Japanese, Japanese->English and English->German, respectively. The BLEU scores of English->Chinese, English->Japanese and Japanese->English are the highest among all submissions, and that of English->German is the highest among all constrained submissions.
Dynamic early exiting aims to accelerate the inference of pre-trained language models (PLMs) by emitting predictions in internal layers without passing through the entire model. In this paper, we empirically analyze the working mechanism of dynamic early exiting and find that it faces a performance bottleneck under high speed-up ratios. On one hand, the PLMs’ representations in shallow layers lack high-level semantic information and thus are not sufficient for accurate predictions. On the other hand, the exiting decisions made by internal classifiers are unreliable, leading to wrongly emitted early predictions. We instead propose a new framework for accelerating the inference of PLMs, CascadeBERT, which dynamically selects proper-sized and complete models in a cascading manner, providing comprehensive representations for predictions. We further devise a difficulty-aware objective, encouraging the model to output the class probability that reflects the real difficulty of each instance for a more reliable cascading mechanism. Experimental results show that CascadeBERT can achieve an overall 15% improvement under 4x speed-up compared with existing dynamic early exiting methods on six classification tasks, yielding more calibrated and accurate predictions.
Aspect-based sentiment analysis (ABSA) mainly involves three subtasks: aspect term extraction, opinion term extraction, and aspect-level sentiment classification, which are typically handled in a separate or joint manner. However, previous approaches do not well exploit the interactive relations among three subtasks and do not pertinently leverage the easily available document-level labeled domain/sentiment knowledge, which restricts their performances. To address these issues, we propose a novel Iterative Multi-Knowledge Transfer Network (IMKTN) for end-to-end ABSA. For one thing, through the interactive correlations between the ABSA subtasks, our IMKTN transfers the task-specific knowledge from any two of the three subtasks to another one at the token level by utilizing a well-designed routing algorithm, that is, any two of the three subtasks will help the third one. For another, our IMKTN pertinently transfers the document-level knowledge, i.e., domain-specific and sentiment-related knowledge, to the aspect-level subtasks to further enhance the corresponding performance. Experimental results on three benchmark datasets demonstrate the effectiveness and superiority of our approach.
Considering the importance of building a good Visual Dialog (VD) Questioner, many researchers study the topic under a Q-Bot-A-Bot image-guessing game setting, where the Questioner needs to raise a series of questions to collect information of an undisclosed image. Despite progress has been made in Supervised Learning (SL) and Reinforcement Learning (RL), issues still exist. Firstly, previous methods do not provide explicit and effective guidance for Questioner to generate visually related and informative questions. Secondly, the effect of RL is hampered by an incompetent component, i.e., the Guesser, who makes image predictions based on the generated dialogs and assigns rewards accordingly. To enhance VD Questioner: 1) we propose a Related entity enhanced Questioner (ReeQ) that generates questions under the guidance of related entities and learns entity-based questioning strategy from human dialogs; 2) we propose an Augmented Guesser that is strong and is optimized for VD especially. Experimental results on the VisDial v1.0 dataset show that our approach achieves state-of-the-art performance on both image-guessing task and question diversity. Human study further verifies that our model generates more visually related, informative and coherent questions.
Currently, multilingual machine translation is receiving more and more attention since it brings better performance for low resource languages (LRLs) and saves more space. However, existing multilingual machine translation models face a severe challenge: imbalance. As a result, the translation performance of different languages in multilingual translation models are quite different. We argue that this imbalance problem stems from the different learning competencies of different languages. Therefore, we focus on balancing the learning competencies of different languages and propose Competence-based Curriculum Learning for Multilingual Machine Translation, named CCL-M. Specifically, we firstly define two competencies to help schedule the high resource languages (HRLs) and the low resource languages: 1) Self-evaluated Competence, evaluating how well the language itself has been learned; and 2) HRLs-evaluated Competence, evaluating whether an LRL is ready to be learned according to HRLs’ Self-evaluated Competence. Based on the above competencies, we utilize the proposed CCL-M algorithm to gradually add new languages into the training set in a curriculum learning manner. Furthermore, we propose a novel competence-aware dynamic balancing sampling strategy for better selecting training samples in multilingual training. Experimental results show that our approach has achieved a steady and significant performance gain compared to the previous state-of-the-art approach on the TED talks dataset.
Researches on dialogue empathy aim to endow an agent with the capacity of accurate understanding and proper responding for emotions. Existing models for empathetic dialogue generation focus on the emotion flow in one direction, that is, from the context to response. We argue that conducting an empathetic conversation is a bidirectional process, where empathy occurs when the emotions of two interlocutors could converge on the same point, i.e., reaching an emotional consensus. Besides, we also find that the empathetic dialogue corpus is extremely limited, which further restricts the model performance. To address the above issues, we propose a dual-generative model, Dual-Emp, to simultaneously construct the emotional consensus and utilize some external unpaired data. Specifically, our model integrates a forward dialogue model, a backward dialogue model, and a discrete latent variable representing the emotional consensus into a unified architecture. Then, to alleviate the constraint of paired data, we extract unpaired emotional data from open-domain conversations and employ Dual-Emp to produce pseudo paired empathetic samples, which is more efficient and low-cost than the human annotation. Automatic and human evaluations demonstrate that our method outperforms competitive baselines in producing coherent and empathetic responses.
Neural Chat Translation (NCT) aims to translate conversational text between speakers of different languages. Despite the promising performance of sentence-level and context-aware neural machine translation models, there still remain limitations in current NCT models because the inherent dialogue characteristics of chat, such as dialogue coherence and speaker personality, are neglected. In this paper, we propose to promote the chat translation by introducing the modeling of dialogue characteristics into the NCT model. To this end, we design four auxiliary tasks including monolingual response generation, cross-lingual response generation, next utterance discrimination, and speaker identification. Together with the main chat translation task, we optimize the enhanced NCT model through the training objectives of all these tasks. By this means, the NCT model can be enhanced by capturing the inherent dialogue characteristics, thus generating more coherent and speaker-relevant translations. Comprehensive experiments on four language directions (English<->German and English<->Chinese) verify the effectiveness and superiority of the proposed approach.
Knowledge distillation (KD) has been proved effective for compressing large-scale pre-trained language models. However, existing methods conduct KD statically, e.g., the student model aligns its output distribution to that of a selected teacher model on the pre-defined training dataset. In this paper, we explore whether a dynamic knowledge distillation that empowers the student to adjust the learning procedure according to its competency, regarding the student performance and learning efficiency. We explore the dynamical adjustments on three aspects: teacher model adoption, data selection, and KD objective adaptation. Experimental results show that (1) proper selection of teacher model can boost the performance of student model; (2) conducting KD with 10% informative instances achieves comparable performance while greatly accelerates the training; (3) the student performance can be boosted by adjusting the supervision contribution of different alignment objective. We find dynamic knowledge distillation is promising and provide discussions on potential future directions towards more efficient KD methods.
Loading models pre-trained on the large-scale corpus in the general domain and fine-tuning them on specific downstream tasks is gradually becoming a paradigm in Natural Language Processing. Previous investigations prove that introducing a further pre-training phase between pre-training and fine-tuning phases to adapt the model on the domain-specific unlabeled data can bring positive effects. However, most of these further pre-training works just keep running the conventional pre-training task, e.g., masked language model, which can be regarded as the domain adaptation to bridge the data distribution gap. After observing diverse downstream tasks, we suggest that different tasks may also need a further pre-training phase with appropriate training tasks to bridge the task formulation gap. To investigate this, we carry out a study for improving multiple task-oriented dialogue downstream tasks through designing various tasks at the further pre-training phase. The experiment shows that different downstream tasks prefer different further pre-training tasks, which have intrinsic correlation and most further pre-training tasks significantly improve certain target tasks rather than all. Our investigation indicates that it is of great importance and effectiveness to design appropriate further pre-training tasks modeling specific information that benefit downstream tasks. Besides, we present multiple constructive empirical conclusions for enhancing task-oriented dialogues.
Dominant sentence ordering models can be classified into pairwise ordering models and set-to-sequence models. However, there is little attempt to combine these two types of models, which inituitively possess complementary advantages. In this paper, we propose a novel sentence ordering framework which introduces two classifiers to make better use of pairwise orderings for graph-based sentence ordering (Yin et al. 2019, 2021). Specially, given an initial sentence-entity graph, we first introduce a graph-based classifier to predict pairwise orderings between linked sentences. Then, in an iterative manner, based on the graph updated by previously predicted high-confident pairwise orderings, another classifier is used to predict the remaining uncertain pairwise orderings. At last, we adapt a GRN-based sentence ordering model (Yin et al. 2019, 2021) on the basis of final graph. Experiments on five commonly-used datasets demonstrate the effectiveness and generality of our model. Particularly, when equipped with BERT (Devlin et al. 2019) and FHDecoder (Yin et al. 2020), our model achieves state-of-the-art performance. Our code is available at https://github.com/DeepLearnXMU/IRSEG.
Scheduled sampling is widely used to mitigate the exposure bias problem for neural machine translation. Its core motivation is to simulate the inference scene during training by replacing ground-truth tokens with predicted tokens, thus bridging the gap between training and inference. However, vanilla scheduled sampling is merely based on training steps and equally treats all decoding steps. Namely, it simulates an inference scene with uniform error rates, which disobeys the real inference scene, where larger decoding steps usually have higher error rates due to error accumulations. To alleviate the above discrepancy, we propose scheduled sampling methods based on decoding steps, increasing the selection chance of predicted tokens with the growth of decoding steps. Consequently, we can more realistically simulate the inference scene during training, thus better bridging the gap between training and inference. Moreover, we investigate scheduled sampling based on both training steps and decoding steps for further improvements. Experimentally, our approaches significantly outperform the Transformer baseline and vanilla scheduled sampling on three large-scale WMT tasks. Additionally, our approaches also generalize well to the text summarization task on two popular benchmarks.
Existing relation extraction (RE) methods typically focus on extracting relational facts between entity pairs within single sentences or documents. However, a large quantity of relational facts in knowledge bases can only be inferred across documents in practice. In this work, we present the problem of cross-document RE, making an initial step towards knowledge acquisition in the wild. To facilitate the research, we construct the first human-annotated cross-document RE dataset CodRED. Compared to existing RE datasets, CodRED presents two key challenges: Given two entities, (1) it requires finding the relevant documents that can provide clues for identifying their relations; (2) it requires reasoning over multiple documents to extract the relational facts. We conduct comprehensive experiments to show that CodRED is challenging to existing RE methods including strong BERT-based models.
Backdoor attacks, which maliciously control a well-trained model’s outputs of the instances with specific triggers, are recently shown to be serious threats to the safety of reusing deep neural networks (DNNs). In this work, we propose an efficient online defense mechanism based on robustness-aware perturbations. Specifically, by analyzing the backdoor training process, we point out that there exists a big gap of robustness between poisoned and clean samples. Motivated by this observation, we construct a word-based robustness-aware perturbation to distinguish poisoned samples from clean samples to defend against the backdoor attacks on natural language processing (NLP) models. Moreover, we give a theoretical analysis about the feasibility of our robustness-aware perturbation-based defense method. Experimental results on sentiment analysis and toxic detection tasks show that our method achieves better defending performance and much lower computational costs than existing online defense methods. Our code is available at https://github.com/lancopku/RAP.
Data augmentation aims to enrich training samples for alleviating the overfitting issue in low-resource or class-imbalanced situations. Traditional methods first devise task-specific operations such as Synonym Substitute, then preset the corresponding parameters such as the substitution rate artificially, which require a lot of prior knowledge and are prone to fall into the sub-optimum. Besides, the number of editing operations is limited in the previous methods, which decreases the diversity of the augmented data and thus restricts the performance gain. To overcome the above limitations, we propose a framework named Text AutoAugment (TAA) to establish a compositional and learnable paradigm for data augmentation. We regard a combination of various operations as an augmentation policy and utilize an efficient Bayesian Optimization algorithm to automatically search for the best policy, which substantially improves the generalization capability of models. Experiments on six benchmark datasets show that TAA boosts classification accuracy in low-resource and class-imbalanced regimes by an average of 8.8% and 9.7%, respectively, outperforming strong baselines.
Pre-trained language models have been widely applied to cross-domain NLP tasks like sentiment analysis, achieving state-of-the-art performance. However, due to the variety of users’ emotional expressions across domains, fine-tuning the pre-trained models on the source domain tends to overfit, leading to inferior results on the target domain. In this paper, we pre-train a sentiment-aware language model (SentiX) via domain-invariant sentiment knowledge from large-scale review datasets, and utilize it for cross-domain sentiment analysis task without fine-tuning. We propose several pre-training tasks based on existing lexicons and annotations at both token and sentence levels, such as emoticons, sentiment words, and ratings, without human interference. A series of experiments are conducted and the results indicate the great advantages of our model. We obtain new state-of-the-art results in all the cross-domain sentiment analysis tasks, and our proposed SentiX can be trained with only 1% samples (18 samples) and it achieves better performance than BERT with 90% samples.
Zero-shot slot filling has widely arisen to cope with data scarcity in target domains. However, previous approaches often ignore constraints between slot value representation and related slot description representation in the latent space and lack enough model robustness. In this paper, we propose a Contrastive Zero-Shot Learning with Adversarial Attack (CZSL-Adv) method for the cross-domain slot filling. The contrastive loss aims to map slot value contextual representations to the corresponding slot description representations. And we introduce an adversarial attack training strategy to improve model robustness. Experimental results show that our model significantly outperforms state-of-the-art baselines under both zero-shot and few-shot settings.
The automatic generation of music comments is of great significance for increasing the popularity of music and the music platform’s activity. In human music comments, there exists high distinction and diverse perspectives for the same song. In other words, for a song, different comments stem from different musical perspectives. However, to date, this characteristic has not been considered well in research on automatic comment generation. The existing methods tend to generate common and meaningless comments. In this paper, we propose an effective multi-perspective strategy to enhance the diversity of the generated comments. The experiment results on two music comment datasets show that our proposed model can effectively generate a series of diverse music comments based on different perspectives, which outperforms state-of-the-art baselines by a substantial margin.
Event Argument Extraction (EAE) aims at predicting event argument roles of entities in text, which is a crucial subtask and bottleneck of event extraction. Existing EAE methods either extract each event argument roles independently or sequentially, which cannot adequately model the joint probability distribution among event arguments and their roles. In this paper, we propose a Bayesian model named Neural Gibbs Sampling (NGS) to jointly extract event arguments. Specifically, we train two neural networks to model the prior distribution and conditional distribution over event arguments respectively and then use Gibbs sampling to approximate the joint distribution with the learned distributions. For overcoming the shortcoming of the high complexity of the original Gibbs sampling algorithm, we further apply simulated annealing to efficiently estimate the joint probability distribution over event arguments and make predictions. We conduct experiments on the two widely-used benchmark datasets ACE 2005 and TAC KBP 2016. The Experimental results show that our NGS model can achieve comparable results to existing state-of-the-art EAE methods. The source code can be obtained from https://github.com/THU-KEG/NGS.
Relational facts are an important component of human knowledge, which are hidden in vast amounts of text. In order to extract these facts from text, people have been working on relation extraction (RE) for years. From early pattern matching to current neural networks, existing RE methods have achieved significant progress. Yet with explosion of Web text and emergence of new relations, human knowledge is increasing drastically, and we thus require “more” from RE: a more powerful RE system that can robustly utilize more data, efficiently learn more relations, easily handle more complicated context, and flexibly generalize to more open domains. In this paper, we look back at existing RE methods, analyze key challenges we are facing nowadays, and show promising directions towards more powerful RE. We hope our view can advance this field and inspire more efforts in the community.
We participate in the WMT 2020 shared newstranslation task on Chinese→English. Our system is based on the Transformer (Vaswaniet al., 2017a) with effective variants and the DTMT (Meng and Zhang, 2019) architecture. In our experiments, we employ data selection, several synthetic data generation approaches (i.e., back-translation, knowledge distillation, and iterative in-domain knowledge transfer), advanced finetuning approaches and self-bleu based model ensemble. Our constrained Chinese→English system achieves 36.9 case-sensitive BLEU score, which is thehighest among all submissions.
This paper describes our system for SemEval-2020 Task 4: Commonsense Validation and Explanation (Wang et al., 2020). We propose a novel Knowledge-enhanced Graph Attention Network (KEGAT) architecture for this task, leveraging heterogeneous knowledge from both the structured knowledge base (i.e. ConceptNet) and unstructured text to better improve the ability of a machine in commonsense understanding. This model has a powerful commonsense inference capability via utilizing suitable commonsense incorporation methods and upgraded data augmentation techniques. Besides, an internal sharing mechanism is cooperated to prohibit our model from insufficient and excessive reasoning for commonsense. As a result, this model performs quite well in both validation and explanation. For instance, it achieves state-of-the-art accuracy in the subtask called Commonsense Explanation (Multi-Choice). We officially name the system as ECNU-SenseMaker. Code is publicly available at https://github.com/ECNU-ICA/ECNU-SenseMaker.
Current approaches to machine translation (MT) either translate sentences in isolation, disregarding the context they appear in, or model context at the level of the full document, without a notion of any internal structure the document may have. In this work we consider the fact that documents are rarely homogeneous blocks of text, but rather consist of parts covering different topics. Some documents, such as biographies and encyclopedia entries, have highly predictable, regular structures in which sections are characterised by different topics. We draw inspiration from Louis and Webber (2014) who use this information to improve statistical MT and transfer their proposal into the framework of neural MT. We compare two different methods of including information about the topic of the section within which each sentence is found: one using side constraints and the other using a cache-based model. We create and release the data on which we run our experiments - parallel corpora for three language pairs (Chinese-English, French-English, Bulgarian-English) from Wikipedia biographies, which we extract automatically, preserving the boundaries of sections within the articles.
We propose UPSA, a novel approach that accomplishes Unsupervised Paraphrasing by Simulated Annealing. We model paraphrase generation as an optimization problem and propose a sophisticated objective function, involving semantic similarity, expression diversity, and language fluency of paraphrases. UPSA searches the sentence space towards this objective by performing a sequence of local editing. We evaluate our approach on various datasets, namely, Quora, Wikianswers, MSCOCO, and Twitter. Extensive results show that UPSA achieves the state-of-the-art performance compared with previous unsupervised methods in terms of both automatic and human evaluations. Further, our approach outperforms most existing domain-adapted supervised models, showing the generalizability of UPSA.
Hierarchical text classification is an essential yet challenging subtask of multi-label text classification with a taxonomic hierarchy. Existing methods have difficulties in modeling the hierarchical label structure in a global view. Furthermore, they cannot make full use of the mutual interactions between the text feature space and the label space. In this paper, we formulate the hierarchy as a directed graph and introduce hierarchy-aware structure encoders for modeling label dependencies. Based on the hierarchy encoder, we propose a novel end-to-end hierarchy-aware global model (HiAGM) with two variants. A multi-label attention variant (HiAGM-LA) learns hierarchy-aware label embeddings through the hierarchy encoder and conducts inductive fusion of label-aware text features. A text feature propagation model (HiAGM-TP) is proposed as the deductive variant that directly feeds text features into hierarchy encoders. Compared with previous works, both HiAGM-LA and HiAGM-TP achieve significant and consistent improvements on three benchmark datasets.
Multi-modal neural machine translation (NMT) aims to translate source sentences into a target language paired with images. However, dominant multi-modal NMT models do not fully exploit fine-grained semantic correspondences between semantic units of different modalities, which have potential to refine multi-modal representation learning. To deal with this issue, in this paper, we propose a novel graph-based multi-modal fusion encoder for NMT. Specifically, we first represent the input sentence and image using a unified multi-modal graph, which captures various semantic relationships between multi-modal semantic units (words and visual objects). We then stack multiple graph-based multi-modal fusion layers that iteratively perform semantic interactions to learn node representations. Finally, these representations provide an attention-based context vector for the decoder. We evaluate our proposed encoder on the Multi30K datasets. Experimental results and in-depth analysis show the superiority of our multi-modal NMT model.
Non-autoregressive neural machine translation (NAT) predicts the entire target sequence simultaneously and significantly accelerates inference process. However, NAT discards the dependency information in a sentence, and thus inevitably suffers from the multi-modality problem: the target tokens may be provided by different possible translations, often causing token repetitions or missing. To alleviate this problem, we propose a novel semi-autoregressive model RecoverSAT in this work, which generates a translation as a sequence of segments. The segments are generated simultaneously while each segment is predicted token-by-token. By dynamically determining segment length and deleting repetitive segments, RecoverSAT is capable of recovering from repetitive and missing token errors. Experimental results on three widely-used benchmark datasets show that our proposed model achieves more than 4 times speedup while maintaining comparable performance compared with the corresponding autoregressive model.
Continual relation learning aims to continually train a model on new data to learn incessantly emerging novel relations while avoiding catastrophically forgetting old relations. Some pioneering work has proved that storing a handful of historical relation examples in episodic memory and replaying them in subsequent training is an effective solution for such a challenging problem. However, these memory-based methods usually suffer from overfitting the few memorized examples of old relations, which may gradually cause inevitable confusion among existing relations. Inspired by the mechanism in human long-term memory formation, we introduce episodic memory activation and reconsolidation (EMAR) to continual relation learning. Every time neural models are activated to learn both new and memorized data, EMAR utilizes relation prototypes for memory reconsolidation exercise to keep a stable understanding of old relations. The experimental results show that EMAR could get rid of catastrophically forgetting old relations and outperform the state-of-the-art continual learning models.
Neural network-based sequence-to-sequence (seq2seq) models strongly suffer from the low-diversity problem when it comes to open-domain dialogue generation. As bland and generic utterances usually dominate the frequency distribution in our daily chitchat, avoiding them to generate more interesting responses requires complex data filtering, sampling techniques or modifying the training objective. In this paper, we propose a new perspective to diversify dialogue generation by leveraging non-conversational text. Compared with bilateral conversations, non-conversational text are easier to obtain, more diverse and cover a much broader range of topics. We collect a large-scale non-conversational corpus from multi sources including forum comments, idioms and book snippets. We further present a training paradigm to effectively incorporate these text via iterative back translation. The resulting model is tested on two conversational datasets from different domains and is shown to produce significantly more diverse responses without sacrificing the relevance with context.
Generating a vivid, novel, and diverse essay with only several given topic words is a promising task of natural language generation. Previous work in this task exists two challenging problems: neglect of sentiment beneath the text and insufficient utilization of topic-related knowledge. Therefore, we propose a novel Sentiment Controllable topic-to- essay generator with a Topic Knowledge Graph enhanced decoder, named SCTKG, which is based on the conditional variational auto-encoder (CVAE) framework. We firstly inject the sentiment information into the generator for controlling sentiment for each sentence, which leads to various generated essays. Then we design a Topic Knowledge Graph enhanced decoder. Unlike existing models that use knowledge entities separately, our model treats knowledge graph as a whole and encodes more structured, connected semantic information in the graph to generate a more relevant essay. Experimental results show that our SCTKG can generate sentiment controllable essays and outperform the state-of-the-art approach in terms of topic relevance, fluency, and diversity on both automatic and human evaluation.
There exists a token imbalance phenomenon in natural language as different tokens appear with different frequencies, which leads to different learning difficulties for tokens in Neural Machine Translation (NMT). The vanilla NMT model usually adopts trivial equal-weighted objectives for target tokens with different frequencies and tends to generate more high-frequency tokens and less low-frequency tokens compared with the golden token distribution. However, low-frequency tokens may carry critical semantic information that will affect the translation quality once they are neglected. In this paper, we explored target token-level adaptive objectives based on token frequencies to assign appropriate weights for each target token during training. We aimed that those meaningful but relatively low-frequency words could be assigned with larger weights in objectives to encourage the model to pay more attention to these tokens. Our method yields consistent improvements in translation quality on ZH-EN, EN-RO, and EN-DE translation tasks, especially on sentences that contain more low-frequency tokens where we can get 1.68, 1.02, and 0.52 BLEU increases compared with baseline, respectively. Further analyses show that our method can also improve the lexical diversity of translation.
Transformer models achieve remarkable success in Neural Machine Translation. Many efforts have been devoted to deepening the Transformer by stacking several units (i.e., a combination of Multihead Attentions and FFN) in a cascade, while the investigation over multiple parallel units draws little attention. In this paper, we propose the Multi-Unit Transformer (MUTE) , which aim to promote the expressiveness of the Transformer by introducing diverse and complementary units. Specifically, we use several parallel units and show that modeling with multiple units improves model performance and introduces diversity. Further, to better leverage the advantage of the multi-unit setting, we design biased module and sequential dependency that guide and encourage complementariness among different units. Experimental results on three machine translation tasks, the NIST Chinese-to-English, WMT’14 English-to-German and WMT’18 Chinese-to-English, show that the MUTE models significantly outperform the Transformer-Base, by up to +1.52, +1.90 and +1.10 BLEU points, with only a mild drop in inference speed (about 3.1%). In addition, our methods also surpass the Transformer-Big model, with only 54% of its parameters. These results demonstrate the effectiveness of the MUTE, as well as its efficiency in both the inference process and parameter usage.
Event detection (ED), which means identifying event trigger words and classifying event types, is the first and most fundamental step for extracting event knowledge from plain text. Most existing datasets exhibit the following issues that limit further development of ED: (1) Data scarcity. Existing small-scale datasets are not sufficient for training and stably benchmarking increasingly sophisticated modern neural methods. (2) Low coverage. Limited event types of existing datasets cannot well cover general-domain events, which restricts the applications of ED models. To alleviate these problems, we present a MAssive eVENt detection dataset (MAVEN), which contains 4,480 Wikipedia documents, 118,732 event mention instances, and 168 event types. MAVEN alleviates the data scarcity problem and covers much more general event types. We reproduce the recent state-of-the-art ED models and conduct a thorough evaluation on MAVEN. The experimental results show that existing ED methods cannot achieve promising results on MAVEN as on the small datasets, which suggests that ED in the real world remains a challenging task and requires further research efforts. We also discuss further directions for general domain ED with empirical analyses. The source code and dataset can be obtained from https://github.com/THU-KEG/MAVEN-dataset.
Graph embedding (GE) methods embed nodes (and/or edges) in graph into a low-dimensional semantic space, and have shown its effectiveness in modeling multi-relational data. However, existing GE models are not practical in real-world applications since it overlooked the streaming nature of incoming data. To address this issue, we study the problem of continual graph representation learning which aims to continually train a GE model on new data to learn incessantly emerging multi-relational data while avoiding catastrophically forgetting old learned knowledge. Moreover, we propose a disentangle-based continual graph representation learning (DiCGRL) framework inspired by the human’s ability to learn procedural knowledge. The experimental results show that DiCGRL could effectively alleviate the catastrophic forgetting problem and outperform state-of-the-art continual learning models. The code and datasets are released on https://github.com/KXY-PUBLIC/DiCGRL.
Knowledge selection plays an important role in knowledge-grounded dialogue, which is a challenging task to generate more informative responses by leveraging external knowledge. Recently, latent variable models have been proposed to deal with the diversity of knowledge selection by using both prior and posterior distributions over knowledge and achieve promising performance. However, these models suffer from a huge gap between prior and posterior knowledge selection. Firstly, the prior selection module may not learn to select knowledge properly because of lacking the necessary posterior information. Secondly, latent variable models suffer from the exposure bias that dialogue generation is based on the knowledge selected from the posterior distribution at training but from the prior distribution at inference. Here, we deal with these issues on two aspects: (1) We enhance the prior selection module with the necessary posterior information obtained from the specially designed Posterior Information Prediction Module (PIPM); (2) We propose a Knowledge Distillation Based Training Strategy (KDBTS) to train the decoder with the knowledge selected from the prior distribution, removing the exposure bias of knowledge selection. Experimental results on two knowledge-grounded dialogue datasets show that both PIPM and KDBTS achieve performance improvement over the state-of-the-art latent variable model and their combination shows further improvement.
Neural models have achieved remarkable success on relation extraction (RE) benchmarks. However, there is no clear understanding what information in text affects existing RE models to make decisions and how to further improve the performance of these models. To this end, we empirically study the effect of two main information sources in text: textual context and entity mentions (names). We find that (i) while context is the main source to support the predictions, RE models also heavily rely on the information from entity mentions, most of which is type information, and (ii) existing datasets may leak shallow heuristics via entity mentions and thus contribute to the high performance on RE benchmarks. Based on the analyses, we propose an entity-masked contrastive pre-training framework for RE to gain a deeper understanding on both textual context and type information while avoiding rote memorization of entities or use of superficial cues in mentions. We carry out extensive experiments to support our views, and show that our framework can improve the effectiveness and robustness of neural models in different RE scenarios. All the code and datasets are released at https://github.com/thunlp/RE-Context-or-Names.
Being able to perform in-depth chat with humans in a closed domain is a precondition before an open-domain chatbot can be ever claimed. In this work, we take a close look at the movie domain and present a large-scale high-quality corpus with fine-grained annotations in hope of pushing the limit of movie-domain chatbots. We propose a unified, readily scalable neural approach which reconciles all subtasks like intent prediction and knowledge retrieval. The model is first pretrained on the huge general-domain data, then finetuned on our corpus. We show this simple neural approach trained on high-quality data is able to outperform commercial systems replying on complex rules. On both the static and interactive tests, we find responses generated by our system exhibits remarkably good engagement and sensibleness close to human-written ones. We further analyze the limits of our work and point out potential directions for future work
Document Grounded Conversations is a task to generate dialogue responses when chatting about the content of a given document. Obviously, document knowledge plays a critical role in Document Grounded Conversations, while existing dialogue models do not exploit this kind of knowledge effectively enough. In this paper, we propose a novel Transformer-based architecture for multi-turn document grounded conversations. In particular, we devise an Incremental Transformer to encode multi-turn utterances along with knowledge in related documents. Motivated by the human cognitive process, we design a two-pass decoder (Deliberation Decoder) to improve context coherence and knowledge correctness. Our empirical study on a real-world Document Grounded Dataset proves that responses generated by our model significantly outperform competitive baselines on both context coherence and knowledge relevance.
Recent research has achieved impressive results in single-turn dialogue modelling. In the multi-turn setting, however, current models are still far from satisfactory. One major challenge is the frequently occurred coreference and information omission in our daily conversation, making it hard for machines to understand the real intention. In this paper, we propose rewriting the human utterance as a pre-process to help multi-turn dialgoue modelling. Each utterance is first rewritten to recover all coreferred and omitted information. The next processing steps are then performed based on the rewritten utterance. To properly train the utterance rewriter, we collect a new dataset with human annotations and introduce a Transformer-based utterance rewriting architecture using the pointer network. We show the proposed architecture achieves remarkably good performance on the utterance rewriting task. The trained utterance rewriter can be easily integrated into online chatbots and brings general improvement over different domains.
Multiple entities in a document generally exhibit complex inter-sentence relations, and cannot be well handled by existing relation extraction (RE) methods that typically focus on extracting intra-sentence relations for single entity pairs. In order to accelerate the research on document-level RE, we introduce DocRED, a new dataset constructed from Wikipedia and Wikidata with three features: (1) DocRED annotates both named entities and relations, and is the largest human-annotated dataset for document-level RE from plain text; (2) DocRED requires reading multiple sentences in a document to extract entities and infer their relations by synthesizing all information of the document; (3) along with the human-annotated data, we also offer large-scale distantly supervised data, which enables DocRED to be adopted for both supervised and weakly supervised scenarios. In order to verify the challenges of document-level RE, we implement recent state-of-the-art methods for RE and conduct a thorough evaluation of these methods on DocRED. Empirical results show that DocRED is challenging for existing RE methods, which indicates that document-level RE remains an open problem and requires further efforts. Based on the detailed analysis on the experiments, we discuss multiple promising directions for future research. We make DocRED and the code for our baselines publicly available at https://github.com/thunlp/DocRED.
Fact verification (FV) is a challenging task which requires to retrieve relevant evidence from plain text and use the evidence to verify given claims. Many claims require to simultaneously integrate and reason over several pieces of evidence for verification. However, previous work employs simple models to extract information from evidence without letting evidence communicate with each other, e.g., merely concatenate the evidence for processing. Therefore, these methods are unable to grasp sufficient relational and logical information among the evidence. To alleviate this issue, we propose a graph-based evidence aggregating and reasoning (GEAR) framework which enables information to transfer on a fully-connected evidence graph and then utilizes different aggregators to collect multi-evidence information. We further employ BERT, an effective pre-trained language representation model, to improve the performance. Experimental results on a large-scale benchmark dataset FEVER have demonstrated that GEAR could leverage multi-evidence information for FV and thus achieves the promising result with a test FEVER score of 67.10%. Our code is available at https://github.com/thunlp/GEAR.
Rhetoric is a vital element in modern poetry, and plays an essential role in improving its aesthetics. However, to date, it has not been considered in research on automatic poetry generation. In this paper, we propose a rhetorically controlled encoder-decoder for modern Chinese poetry generation. Our model relies on a continuous latent variable as a rhetoric controller to capture various rhetorical patterns in an encoder, and then incorporates rhetoric-based mixtures while generating modern Chinese poetry. For metaphor and personification, an automated evaluation shows that our model outperforms state-of-the-art baselines by a substantial margin, while human evaluation shows that our model generates better poems than baseline methods in terms of fluency, coherence, meaningfulness, and rhetorical aesthetics.
In this paper, we focus on the task of fine-grained text sentiment transfer (FGST). This task aims to revise an input sequence to satisfy a given sentiment intensity, while preserving the original semantic content. Different from the conventional sentiment transfer task that only reverses the sentiment polarity (positive/negative) of text, the FTST task requires more nuanced and fine-grained control of sentiment. To remedy this, we propose a novel Seq2SentiSeq model. Specifically, the numeric sentiment intensity value is incorporated into the decoder via a Gaussian kernel layer to finely control the sentiment intensity of the output. Moreover, to tackle the problem of lacking parallel data, we propose a cycle reinforcement learning algorithm to guide the model training. In this framework, the elaborately designed rewards can balance both sentiment transformation and content preservation, while not requiring any ground truth output. Experimental results show that our approach can outperform existing methods by a large margin in both automatic evaluation and human evaluation.
Table-to-text generation aims to translate the structured data into the unstructured text. Most existing methods adopt the encoder-decoder framework to learn the transformation, which requires large-scale training samples. However, the lack of large parallel data is a major practical problem for many domains. In this work, we consider the scenario of low resource table-to-text generation, where only limited parallel data is available. We propose a novel model to separate the generation into two stages: key fact prediction and surface realization. It first predicts the key facts from the tables, and then generates the text with the key facts. The training of key fact prediction needs much fewer annotated data, while surface realization can be trained with pseudo parallel corpus. We evaluate our model on a biography generation dataset. Our model can achieve 27.34 BLEU score with only 1,000 parallel data, while the baseline model only obtain the performance of 9.71 BLEU score.
Current state-of-the-art systems for sequence labeling are typically based on the family of Recurrent Neural Networks (RNNs). However, the shallow connections between consecutive hidden states of RNNs and insufficient modeling of global information restrict the potential performance of those models. In this paper, we try to address these issues, and thus propose a Global Context enhanced Deep Transition architecture for sequence labeling named GCDT. We deepen the state transition path at each position in a sentence, and further assign every token with a global representation learned from the entire sentence. Experiments on two standard sequence labeling tasks show that, given only training data and the ubiquitous word embeddings (Glove), our GCDT achieves 91.96 F1 on the CoNLL03 NER task and 95.43 F1 on the CoNLL2000 Chunking task, which outperforms the best reported results under the same settings. Furthermore, by leveraging BERT as an additional resource, we establish new state-of-the-art results with 93.47 F1 on NER and 97.30 F1 on Chunking.
Non-Autoregressive Transformer (NAT) aims to accelerate the Transformer model through discarding the autoregressive mechanism and generating target words independently, which fails to exploit the target sequential information. Over-translation and under-translation errors often occur for the above reason, especially in the long sentence translation scenario. In this paper, we propose two approaches to retrieve the target sequential information for NAT to enhance its translation ability while preserving the fast-decoding property. Firstly, we propose a sequence-level training method based on a novel reinforcement algorithm for NAT (Reinforce-NAT) to reduce the variance and stabilize the training procedure. Secondly, we propose an innovative Transformer decoder named FS-decoder to fuse the target sequential information into the top layer of the decoder. Experimental results on three translation tasks show that the Reinforce-NAT surpasses the baseline NAT system by a significant margin on BLEU without decelerating the decoding speed and the FS-decoder achieves comparable translation performance to the autoregressive Transformer with considerable speedup.
Spoken Language Understanding (SLU) mainly involves two tasks, intent detection and slot filling, which are generally modeled jointly in existing works. However, most existing models fail to fully utilize cooccurrence relations between slots and intents, which restricts their potential performance. To address this issue, in this paper we propose a novel Collaborative Memory Network (CM-Net) based on the well-designed block, named CM-block. The CM-block firstly captures slot-specific and intent-specific features from memories in a collaborative manner, and then uses these enriched features to enhance local context representations, based on which the sequential information flow leads to more specific (slot and intent) global utterance representations. Through stacking multiple CM-blocks, our CM-Net is able to alternately perform information exchange among specific memories, local contexts and the global utterance, and thus incrementally enriches each other. We evaluate the CM-Net on two standard benchmarks (ATIS and SNIPS) and a self-collected corpus (CAIS). Experimental results show that the CM-Net achieves the state-of-the-art results on the ATIS and SNIPS in most of criteria, and significantly outperforms the baseline models on the CAIS. Additionally, we make the CAIS dataset publicly available for the research community.
Context modeling is essential to generate coherent and consistent translation for Document-level Neural Machine Translations. The widely used method for document-level translation usually compresses the context information into a representation via hierarchical attention networks. However, this method neither considers the relationship between context words nor distinguishes the roles of context words. To address this problem, we propose a query-guided capsule networks to cluster context information into different perspectives from which the target translation may concern. Experiment results show that our method can significantly outperform strong baselines on multiple data sets of different domains.
Numerical reasoning, such as addition, subtraction, sorting and counting is a critical skill in human’s reading comprehension, which has not been well considered in existing machine reading comprehension (MRC) systems. To address this issue, we propose a numerical MRC model named as NumNet, which utilizes a numerically-aware graph neural network to consider the comparing information and performs numerical reasoning over numbers in the question and passage. Our system achieves an EM-score of 64.56% on the DROP dataset, outperforming all existing machine reading comprehension models by considering the numerical relations among numbers.
Aspect based sentiment analysis (ABSA) aims to identify the sentiment polarity towards the given aspect in a sentence, while previous models typically exploit an aspect-independent (weakly associative) encoder for sentence representation generation. In this paper, we propose a novel Aspect-Guided Deep Transition model, named AGDT, which utilizes the given aspect to guide the sentence encoding from scratch with the specially-designed deep transition architecture. Furthermore, an aspect-oriented objective is designed to enforce AGDT to reconstruct the given aspect with the generated sentence representation. In doing so, our AGDT can accurately generate aspect-specific sentence representation, and thus conduct more accurate sentiment predictions. Experimental results on multiple SemEval datasets demonstrate the effectiveness of our proposed approach, which significantly outperforms the best reported results with the same setting.
Existing event extraction methods classify each argument role independently, ignoring the conceptual correlations between different argument roles. In this paper, we propose a Hierarchical Modular Event Argument Extraction (HMEAE) model, to provide effective inductive bias from the concept hierarchy of event argument roles. Specifically, we design a neural module network for each basic unit of the concept hierarchy, and then hierarchically compose relevant unit modules with logical operations into a role-oriented modular network to classify a specific argument role. As many argument roles share the same high-level unit module, their correlation can be utilized to extract specific event arguments better. Experiments on real-world datasets show that HMEAE can effectively leverage useful knowledge from the concept hierarchy and significantly outperform the state-of-the-art baselines. The source code can be obtained from https://github.com/thunlp/HMEAE.
We present FewRel 2.0, a more challenging task to investigate two aspects of few-shot relation classification models: (1) Can they adapt to a new domain with only a handful of instances? (2) Can they detect none-of-the-above (NOTA) relations? To construct FewRel 2.0, we build upon the FewRel dataset by adding a new test set in a quite different domain, and a NOTA relation choice. With the new dataset and extensive experimental analysis, we found (1) that the state-of-the-art few-shot relation classification models struggle on these two aspects, and (2) that the commonly-used techniques for domain adaptation and NOTA detection still cannot handle the two challenges well. Our research calls for more attention and further efforts to these two real-world issues. All details and resources about the dataset and baselines are released at https://github.com/thunlp/fewrel.
Deep Neural Networks (DNNs) have provably enhanced the state-of-the-art Neural Machine Translation (NMT) with its capability in modeling complex functions and capturing complex linguistic structures. However NMT with deep architecture in its encoder or decoder RNNs often suffer from severe gradient diffusion due to the non-linear recurrent activations, which often makes the optimization much more difficult. To address this problem we propose a novel linear associative units (LAU) to reduce the gradient propagation path inside the recurrent unit. Different from conventional approaches (LSTM unit and GRU), LAUs uses linear associative connections between input and output of the recurrent unit, which allows unimpeded information flow through both space and time The model is quite simple, but it is surprisingly effective. Our empirical study on Chinese-English translation shows that our model with proper configuration can improve by 11.7 BLEU upon Groundhog and the best reported on results in the same setting. On WMT14 English-German task and a larger WMT14 English-French task, our model achieves comparable results with the state-of-the-art.
This paper proposes three distortion models to explicitly incorporate the word reordering knowledge into attention-based Neural Machine Translation (NMT) for further improving translation performance. Our proposed models enable attention mechanism to attend to source words regarding both the semantic requirement and the word reordering penalty. Experiments on Chinese-English translation show that the approaches can improve word alignment quality and achieve significant translation improvements over a basic attention-based NMT by large margins. Compared with previous works on identical corpora, our system achieves the state-of-the-art performance on translation quality.
Neural machine translation (NMT) aims at solving machine translation (MT) problems using neural networks and has exhibited promising results in recent years. However, most of the existing NMT models are shallow and there is still a performance gap between a single NMT model and the best conventional MT system. In this work, we introduce a new type of linear connections, named fast-forward connections, based on deep Long Short-Term Memory (LSTM) networks, and an interleaved bi-directional architecture for stacking the LSTM layers. Fast-forward connections play an essential role in propagating the gradients and building a deep topology of depth 16. On the WMT’14 English-to-French task, we achieve BLEU=37.7 with a single attention model, which outperforms the corresponding single shallow model by 6.2 BLEU points. This is the first time that a single NMT model achieves state-of-the-art performance and outperforms the best conventional model by 0.7 BLEU points. We can still achieve BLEU=36.3 even without using an attention mechanism. After special handling of unknown words and model ensembling, we obtain the best score reported to date on this task with BLEU=40.4. Our models are also validated on the more difficult WMT’14 English-to-German task.